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The complex relationship of 
mathematics and physics



Not so uncommon views of the 
math/physics relationship

Department of Science Education

In math classes: physics as an application of 
previously/abstractly defined concepts and/or as 
an introduction scenario.

In physics classes: mathematics as a language to 
express physical quantities and a tool to calculate. 

The relationship is much more complex!



3 cases illustrate a complex interplay

Department of Science Education

• Case 1: Circular polarization and complex numbers 

• Case 2: Electromagnetism and quaternions 

• Case 3: Hydrodynamics and complex analysis

Not very useful to think generally about
the math/physics relationship
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1. Fresnel equations become complex

74 Propagation of light

Fresnel equations for glass-air (eliminated θ2 using Snell’s law)
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with n1 = 1 and n2 = n. For incident angles greater than the critical
angle θ1 ≥ θc the square root becomes negative:

r∥ =
cos(θ1)− i · n ·

√
n2 sin2(θ1)− 1

cos(θ1) + i · n ·
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, θ1 ≥ θc (3.64)

r⊥ =
n cos(θ1)− i ·

√
n2 sin2(θ1)− 1

n cos(θ1) + i ·
√
n2 sin2(θ1)− 1

, θ1 ≥ θc (3.65)

Both expressions are on the form:

x− iy

x+ iy
, (3.66)

so we express the r parameters as

|r|eiδ =
x− iy

x+ iy
= |r|e

−iα

eiα
= |r|e−i2α, (3.67)

where δ is the phase we are looking for and α just a convenient param-

74 Propagation of light

Fresnel equations for glass-air (eliminated θ2 using Snell’s law)

r∥ =
n2 cos(θ1)− n1

√
1−

(
n1
n2

)2
sin2(θ1)

n2 cos(θ1) + n1

√
1−

(
n1
n2

)2
sin2(θ1)

(3.60)

=
cos(θ1)− n

√
1− n2 sin2(θ1)

cos(θ1) + n
√
1− n2 sin2(θ1)

(3.61)

r⊥ =
n1 cos(θ1)− n2

√
1−

(
n1
n2

)2
sin2(θ1)

n1 cos(θ1) + n2

√
1−

(
n1
n2

)2
sin2(θ1)

(3.62)

=
n cos(θ1)−

√
1− n2 sin2(θ1)

n cos(θ1) +
√
1− n2 sin2(θ1)

(3.63)

with n1 = 1 and n2 = n. For incident angles greater than the critical
angle θ1 ≥ θc the square root becomes negative:

r∥ =
cos(θ1)− i · n ·

√
n2 sin2(θ1)− 1

cos(θ1) + i · n ·
√
n2 sin2(θ1)− 1

, θ1 ≥ θc (3.64)

r⊥ =
n cos(θ1)− i ·

√
n2 sin2(θ1)− 1

n cos(θ1) + i ·
√
n2 sin2(θ1)− 1

, θ1 ≥ θc (3.65)

Both expressions are on the form:

x− iy

x+ iy
, (3.66)

so we express the r parameters as

|r|eiδ =
x− iy

x+ iy
= |r|e

−iα

eiα
= |r|e−i2α, (3.67)

where δ is the phase we are looking for and α just a convenient param-

n2 sin2(θ 1)

> 1

When

r⊥  is not real!

= 1 r⊥ =1

< 1 r⊥ <1

Due to the general law of continuity, if 
there is an accurate expression for the laws 
of reflection just before the limit, it should 
remain valid afterwards; the challenge is to 
interpret/guess what analysis says about 
these imaginary expressions. 

1. Circular polarization and complex numbers 
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(
Et

Ei

)
=

2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)
(3.48)

For the ratios we often use the notation r⊥ = Er/Ei and t⊥ = Et/Ei.
Since we had four boundary conditions we will have four Fresnel equa-
tions:

Fresnel’s equations: (3.49)

r⊥ =
n1 cos(θ1)− n2 cos(θ2)

n1 cos(θ1) + n2 cos(θ2)

t⊥ =
2n1 cos(θ1)

n1 cos(θ1) + n2 cos(θ2)

r∥ =
n2 cos(θ1)− n1 cos(θ2)

n2 cos(θ1) + n1 cos(θ2)

t∥ =
2n1 cos(θ1)

n2 cos(θ1) + n1 cos(θ2)

Example 3.7 Fresnel’s equations at normal incidence.
At normal incidence θ1 = θ2 = 0. Looking at r⊥ (r∥) and t⊥ (t∥) we
find:

r⊥ =
n1 − n2

n1 + n2
and t⊥ =

2n1

n1 + n2
(3.50)

For an air glass interface n1 = 1 and n2 = 1.5 we will have r⊥ = −0.2.
The reflected wave is thus

Er = −0.2 · Ei = 0.2 · eiπ · Ei = 0.2 · Ei
0 · ei(k·r−ωt+π). (3.51)

This means the reflected beam undergo a phase change of π at the
interface! You may have noticed that if we used the parallel component at
normal incidence we would get Er = 0.2 ·Ei predicting same amplitude
ratio, but no phase shift? Actually, there is a π phase shift and the
conflict comes from the sign convention used for the two polarizations
E∥ and E⊥. For parallel polarization, r∥ is positive when E∥ has an
upward component for both the incident and reflected beams. Imagine
the angle of incidence θ1 → 0 (normal incidence case), this means that
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Figure 3.7 Light travelling from one insulator n1 into another n2.
The plane of incidence is spanned by he normal to the surface and
the incident k1 vector.

of them here, but refer to other optics books. However, let us look at two
prominent proofs both illustrating the kinematic nature of the law. The
first is perhaps the most general. Since there is translation symmetry
along the y -direction, momentum will be conserved in this direction.
For a photon entering along k1 and exit along k2 the y-component of
its momentum its conserved:

h sin(θ1)

λ1
=

h sin(θ2)

λ2
(3.24)

n1 sin(θ1)

λ0
=

n2 sin(θ2)

λ0
(3.25)

n1 sin(θ1) = n2 sin(θ2) (3.26)

where we used the expression for the photon momentum and λ0 is the
vacuum wavelength. The reflection law θ1 = θ3 can be shown in a similar
manner. From Fermat’s principle we can also show Snell’s law. Looking
at figure 3.8 we write up the the OPL and demand it to be stationary:

OPL(x) = n1

√
x2 + a2 + n2

√
(s− x)2 + b2 (3.27)
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3.2 Fresnel’s laws of reflection 69

Fresnel’s equations reduced form: (3.54)

r⊥ =
sin(θ2 − θ1)

sin(θ1 + θ2)

t⊥ =
2 cos(θ1) sin(θ2)

sin(θ1 + θ2)

r∥ =
tan(θ1 − θ2)

tan(θ1 + θ2)

t∥ =
2 cos(θ1) sin(θ2)

sin(θ1 + θ2) cos(θ1 − θ2)

3.2.1 Application of Fresnel’s equations

Fresnel’s equations is the working horse in most optics industry and ad-
vanced optical applications. Before considering the intensity expressions
let us look at the equations for an air-glass interface. In figure 3.13 we
plot the reflection coefficients of equation (3.49) as a function of incident
angle θ1.

The first thing to notice in figure 3.13 is the form of r⊥. It stays neg-
ative for all values of θ1. So for this component reflections will always
be accompanied by a phase shift of π. The transmitted fields will never
experience any phase shifts. At a particular angle, the so-called Brew-
ster’s angle θB , the r⊥ coefficient vanishes. Here only light with an
electric field component parallel3 to the glass surface is reflected! We
will interpret the physics of this angle further below.

Looking at r∥ from equation (3.54) we observe that for θ1+ θ2 = π/2,
meaning tan(θ1 + θ2) → ∞, the coefficient r∥ → 0. Using Snell’s law we
find

n1 sin(θ1) = n2 sin(θ2) = n2 sin(
π

2
− θ1) (3.55)

3 meaning perpendicular to the plane of incidence r⊥!
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1− n2 sin2(θ 1) = n2 sin2(θ 1)−1 ⋅ −1

r⊥ = r⊥ cosα + isinα[ ]

(cosα, sinα )

α

r⊥ =1

Interpretation:
Phase shift!

It means without a doubt that the periods of
vibrations15 of the reflected waves, which in the
basis of the calculations were supposed coincident
at the surface with the ones from the incident
waves, no longer coincide […] these periods are
retarded or advanced by a certain quantity.

In other words, it means that if light is polarized perpen-
dicularly to the plane of incidence and the angle of incidence
is greater than the critical, it will undergo a phase shift16

given by a. But how to obtain this value experimentally?
Intuitively one could think of some kind of interference phe-
nomenon to measure the phase shift. But instead, Fresnel
takes another route, which involves a meticulous technique
that enables one to create what he called circularly polarized
light.

C. Creating circularly polarized light

The basic idea is to consider light linearly polarized in a
direction inclined 45! with the plane of incidence. In this
way, the incident light can be treated as the resultant of two
orthogonal components (? and k) with equal moduli oscillat-
ing in phase (Fig. 3).

After total internal reflection each component will
undergo a different phase shift and the crucial factor will be
the phase difference between the components. In an analo-
gous way to that used to express r? as a complex number,
one obtains from Eq. (4) and some manipulation

rk ¼ #
n4 þ 1ð Þ sin2 hi # n2 # 1

n2 # 1ð Þ n2 þ 1ð Þ sin2 hi # 1
! "

#
2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# sin2 hi

$ %
n2 sin2 hi # 1
$ %q

n2 # 1ð Þ n2 þ 1ð Þ sin2 hi # 1
! " i; (7)

which can also be written as the complex number
rk ¼ jrkjðcos bþ isin bÞ. Thus, once again jrkj ¼ 1 and b
is the phase shift experienced by the parallel component.
Since the crucial factor is the phase difference between the
components, i.e., a – b, Fresnel derives an expression for
cosða# bÞ. Using the trigonometric identity cosða# bÞ
¼ cos acos bþ sin asin b and taking each one of the four
terms from Eqs. (6) and (7), Fresnel obtains the following
equation (Ref. 5, p. 790):

cos a# bð Þ ¼ 2n2 sin4hi # n2 þ 1ð Þ sin2 hi þ 1

n2 þ 1ð Þ sin2 hi # 1
: (8)

As previously mentioned, if the components are in phase,
the resultant light is linearly polarized. If they are out of
phase, light is said to be elliptically polarized. For a very par-
ticular phase difference, namely, 90!, the reflected light will
be circularly polarized.18 In the final part of Ref. 5 Fresnel
describes how to obtain this peculiar kind of light, a process
which he called complete depolarization.

Given two media, i.e., the value of n (Fresnel used air and
Saint-Gobain glass with n¼ 1.51), Eq. (8) relates the phase
difference with the angle of incidence. If we insert a
– b¼ 90! and n¼ 1.51 in Eq. (8) and make sin2 hi ¼ x, we
obtain a second degree equation with no real roots.19

Physically, this means that it is not possible to obtain the
desired phase difference with only one total internal reflec-
tion. What about two? Inserting a – b¼ 45! in Eq. (8) we
now obtain two values for the angle of incidence that satisfy
the equation, namely, 48!370 and 54!370. The second value,
Fresnel argues, is better if one wants to neglect the different
refrangibility of each color (the first is a bit too close to the
critical angle for certain frequencies). Thus, he conceives a
glass prism (Fresnel rhomb) that makes polarized light go
through two total internal reflections at hi ¼ 54!370 (Fig. 4).
The same desired phase difference can be obtained by a
greater number of internal reflections (3 for a – b¼ 30!, 4
for a – b¼ 22.5!, etc.; see Fig. 5).

Light coming out of these prisms have peculiar properties
described in Ref. 20. The process has been previously called
complete depolarization, since one cannot linearly polarize it
again with an analyzer (calcite spar), as is the case for nor-
mal (unpolarized) light. Using a terminology introduced by
Fresnel himself, light has been circularly polarized.7

III. CONCLUSIONS

In educational contexts, it is not uncommon to find com-
plex numbers being introduced with some aura of mystery.
The square root of a negative number can be seen as this
thing that exists only in the minds of “crazy mathematicians”
and the very words imaginary and complex seem to support
this view. Such puzzlement is also found in history, for
instance, Cardano referred to the square root of a negative
number as “some recondite third sort of thing” and Leibniz
called the imaginary unit “an almost amphibian object
between Being and Non-being.”4

When complex numbers appear in physics it is common
that only their real parts are assigned physical meaning.
Although the imaginary parts are essential for performing
the calculations, when the final result is obtained the atten-
tion is often drawn to the real part. A typical example is the
use of complex numbers to describe harmonic motion.

Fig. 3. Incident light is linearly polarized in a direction inclined 45! with the
plane of incidence so that it can be treated as the resultant of two orthogonal
components with equal moduli oscillating in phase.

Fig. 4. Glass prism conceived to produce circularly polarized light after two
total internal reflections at hi ¼ 54!370 when the incident light is linearly
polarized with an inclination of 45! with the plane of incidence (original fig-
ure in Ref. 5, p. 793).
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FIG. 3. Incident light is linearly polarized in a direction in-
clined 45� with the plane of incidence so that it can be treated
as the resultant of two orthogonal components with equal
moduli oscillating in phase.

After total internal reflection each component will un-
dergo a di↵erent phase shift and the crucial factor will be
the phase di↵erence between the components. In an anal-
ogous way as the one made to express r? as a complex
number, one obtains from Eq. (4) and some manipula-
tion:

rk = � (n4+1) sin2 ✓i�n2�1
(n2�1)[(n2+1) sin2 ✓i�1] �

2n
p

(1�sin2 ✓i)(n2 sin2 ✓i�1)

(n2�1)[(n2+1) sin2 ✓i�1] i, (7)

what can also be written as the complex number
rk = |rk|(cos� + i sin�). Thus, once again |rk| = 1
and � is the phase shift underwent by the parallel com-
ponent. Since the crucial factor is the phase di↵erence
between the components, i.e. ↵��, Fresnel derives an ex-
pression for cos (↵� �). Using the trigonometric identity
cos (↵� �) = cos↵ cos�+sin↵ sin� and taking each one
of the four terms from Eqs. (6) and (7), Fresnel obtains
the following equation ([5], p. 790)

cos (↵� �) =
2n2 sin4 ✓i � (n2 + 1) sin2 ✓i + 1

(n2 + 1) sin2 ✓i � 1
. (8)

As previously mentioned, if the components are in
phase, the resultant light is linearly polarized. If they
are out of phase, light is said to be elliptically polarized.
For a very particular phase di↵erence, namely 90�, the
reflected light will be circularly polarized [? ]. In the

final part of [5] Fresnel describes how to obtain this pe-
culiar kind of light, a process which he called complete
depolarization.
Given two media, i.e., the value of n (Fresnel used air

and Saint-Gobain glass with n = 1.51), Eq. (8) relates
the phase di↵erence with the angle of incidence. If we
insert ↵ � � = 90� and n = 1.51 in Eq. (8) and make
sin2 ✓i = x, we obtain a second degree equation with
no real roots [? ]. Physically, this means that it is not
possible to obtain the desired phase di↵erence with only
one total internal reflection. What about two? Inserting
↵ � � = 45� in Eq. (8) we now obtain two values for
the angle of incidence that satisfy the equation, namely
48�370 and 54�370. The second value, Fresnel argues, is
better if one wants to neglect the di↵erent refrangibility
of each color (the first is a bit too close to the criti-
cal angle for certain frequencies). Thus, he conceives a
glass prism (Fresnel rhomb) that makes polarized light
go through two total internal reflections at ✓i = 54�370

(Fig. 4). The same desired phase di↵erence can be ob-
tained by a greater number of internal reflections (3 for
↵� � = 30�, 4 for ↵� � = 22.5�, etc. See Fig. 5).

FIG. 4. Glass prism conceived to produce circularly polarized
light after two total internal reflections at ✓i = 54�370 when
the incident light is linearly polarized with an inclination of
45� with the plane of incidence (Original figure in [5], p. 793).

FIG. 5. Multiple total internal reflections yielding circu-
larly polarized light when the incident light is linearly po-
larized with an inclination of 45� with the plane of incidence
(Adapted from the original in [5], p. 793-94).

Light coming out of these prisms have peculiar prop-
erties described in [12]. The process has been previously
called complete depolarization, since one cannot linearly
polarize it again with an analyzer (calcite spar), as it
is the case of normal (unpolarized) light. Using a ter-
minology introduced by Fresnel himself, light has been
circularly polarized [7].

Prisms create circularly polarized light

1. Circular polarization and complex numbers 



Lessons from Case 1

- New physics can be discovered/predicted from mathematical 
considerations (e.g. particle physics). Wigner’s “unreasonable 
effectiveness”

- One can say that this was the first time in which “nature” was 
abstracted from “pure” mathematics, that is from a 
mathematics which had not been previously abstracted from 
nature itself (Bochner, 1963).

- Circularly polarized light did not exist in nature*, it was 
“human-made” thanks to the formalism of complex numbers.

1. Circular polarization and complex numbers 



Department of Science Education

What are quaternions? How are they related to vectors?

2. Quaternions in Maxwell’s Treatise

2. Quaternions and electromagnetism



Quotation from Crowe (1967)

Maxwell exhibited his main results in quaternionic form.
I went to Prof. Tait’s treatise to get information, and to
learn how to work them. […] But on proceeding to
apply quaternions to the development of electric
theory, I found it very inconvenient. Quaternions were
in their vectorial aspects antiphysical and unnatural […].
So I dropped out the quaternion altogether, and kept
to pure scalars and vectors, using a very simple
vectorial algebra in my papers from 1883 onwards.

Heaviside (1893)

2. Quaternions and electromagnetism

2. Quaternions in Maxwell’s Treatise



- Why do we call the unit vectors i, j and k? They were originally 
related with complex numbers!

- New mathematics created to satisfy the needs of physics. Vectors 
emerge when Heaviside and Gibbs try to improve the use of 
quaternions in EM, which resulted in getting rid of them...

- Scalars and vectors were parts of a single entity (quaternions). 
Representing physical quantities with quaternions was challenging 
(“apples and oranges”) 

- “Vector algebra war” is a wonderful episode to illustrate different 
goals/methods/cultures from math and physics.

Lessons from Case 2

2. Quaternions and electromagnetism



Incompressible

real part of the multiply-valued analytic function f(z) = f̃(z) + c log z. This fact will be
of importance in our subsequent analysis of airfoils.

Applications to Fluid Mechanics

Consider a planar steady state fluid flow, with velocity vector field

v(x) =

(
u(x, y)
v(x, y)

)
at the point x =

(
x
y

)
∈ Ω.

Here Ω ⊂ R2 is the domain occupied by the fluid, while the vector v(x) represents the
instantaneous velocity of the fluid at the point x ∈ Ω. Recall that the flow is incompressible
if and only if it has vanishing divergence:

∇ · v =
∂u

∂x
+
∂v

∂y
= 0. (4.7)

Incompressibility means that the fluid volume does not change as it flows. Most liquids,
including water, are, for all practical purposes, incompressible. On the other hand, the
flow is irrotational if and only if it has vanishing curl:

∇× v =
∂v

∂x
−
∂u

∂y
= 0. (4.8)

Irrotational flows have no vorticity, and hence no circulation. A flow that is both incom-
pressible and irrotational is known as an ideal fluid flow . In many physical regimes, liquids
(and, although less often, gases) behave as ideal fluids .

Observe that the two constraints (4.7–8) are almost identical to the Cauchy–Riemann
equations (3.2); the only difference is the change in sign in front of the derivatives of v.
But this can be easily remedied by replacing v by its negative −v. As a result, we establish
a profound connection between ideal planar fluid flows and complex functions.

Theorem 4.5. The velocity vector field v = ( u(x, y), v(x, y) )T induces an ideal
fluid flow if and only if

f(z) = u(x, y)− i v(x, y) (4.9)

is a complex analytic function of z = x+ i y.

Thus, the components u(x, y) and −v(x, y) of the velocity vector field for an ideal
fluid flow are necessarily harmonic conjugates. The corresponding complex function (4.9)
is, not surprisingly, known as the complex velocity of the fluid flow. When using this result,
do not forget the minus sign that appears in front of the imaginary part of f(z).

Under the flow induced by the velocity vector field v = (u(x, y), v(x, y) )T , the fluid
particles follow the trajectories z(t) = x(t) + i y(t) obtained by integrating the system of
ordinary differential equations

dx

dt
= u(x, y),

dy

dt
= v(x, y). (4.10)
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Complex analysis and hydrodynamics

To solve this system of PDEs, D’Alembert (1749) 
proposed, for the first time, a complex valued 
function 𝑓 𝑥 + 𝑖𝑦 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦)

SOME BASIC MATHEMATICAL CONCEPTIONS FOR PHYSICS 

eliminate complex values from the above equations and also from the com- 
putation of the Born probability density out of the wave function. And one 
can certainly eliminate the imaginary from the de Broglie wave 

exp hi (Et- px -pyy pzz) 

by taking its real or imaginary part, say. But any attempt to do this in 
general, and not for a specific purpose on a special occasion, would run 
counter to a development whose stream is irresistible and whose course is 
indeflectable. 

12. The analytical strength of complex numbers began to be recognized 
towards the end of the seventeenth century, and the principal analytical 
findings up to the middle of the eighteenth century culminated in the 
"magic " formula 

eix = cosx + i sinx 

which was clearly stated by Euler in his " Introductio in analysin infini- 
torum" in 1748. In this formula the letter x denotes arc length so that 
in particular 

eir 1, e2ir - 1, 

and these relations bring together the three symbols e, i, 7r of very different 
provenance. In the second half of the eighteenth century complex numbers 
took a short but notable step on a path which, after a considerable halt, 
began to lead them to an area in which mathematics and physics were 
frequently meeting in the course of the nineteenth century. The step was 
made by d'Alembert.26 In a work on hydrodynamics he introduced in 1752, 
and even earlier in 1746, the system of equations 

ap == q &p 8q 
ax ay ' ay 0x 

which nowadays are named after A. Cauchy and B. Riemann of the nine- 
teenth century. And d'Alembert stated in his style that a general solution 
of the system can be represented as 

p =- ? (x + iy) + ? (x- iy) + if (x + iy) - i (x- iy) 

q = i - i (x + iy) + i4 (x - iy) + p (x + iy) +- + (x - iy) 

where, in our parlance, q (z) and ? (z) are analytic functions of the complex 
variable z =x + iy and have real values on the x-axis. In 1755 Euler 
hailed the result of d'Alembert,26 observed that the above system of equations 
is equivalent to the one equation 

26 See C. Truesdell, Rational Fluid Me- Vol. 1, 1900, pp. 109-128, and Beitrdge zur 
chanics, 1687-1765, pp. LIV and LV, in Leonhardi Geschichte der Funktionentheorie im achtzehn- 
Euleri opera omnia, Ser. 2, Vol. 12, 1954; also ten Jahrhundert, the same series, Vol. 2, 1901, 
Paul Stackel, Integration durch imagindres pp. 111-121. 
Gebiet, Bibliotheca Mathematica Series III, 
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Temptation: Should D’Alembert receive the credit 
for founding complex analysis? Should we rename 
the CR equations to the D’Alembert equations?

NO!
D’Alembert did not conceive a 
complex differentiable function.        
For him, the imaginary quantities 

should “destroy themselves”
  

3. Complex analysis and hydrodynamics



Key take-homes and instructional implications

- The math/physics relation is complex; not very useful to talk 
generally about it; better to look at specific cases and draw 
situated lessons/conclusions; 

- The math/physics interplay is fruitful; often one helps the 
other; but math and physics are fundamentally different, 
and these differences should be made explicit in teaching;

- More could be done to explore the pedagogical potential of 
the historical dimension of the math/physics interplay.


