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When the effect of teaching innovations that focus on conceptual knowledge is to be
investigated, then a test that focuses on this specific form of knowledge is needed. In
physics, for example, the so-called Force Concept Inventory is used in this sense to test
students’ conceptual understanding of classical mechanics. We have developed a
concept inventory for the content domain of Real Analysis. In this paper, we report on
the test construction, on the content validation by experts, and on the results of a pilot
test in Analysis courses at several German universities. We focus on three tasks on the
topic of continuity, all of which have been rated as well suited by selected experts.

Keywords: Teaching and learning of analysis and calculus, assessment practices in
university mathematics education, Real Analysis, concept inventory, conceptual
knowledge.

INTRODUCTION

In this paper, we report on the construction and piloting of a test of conceptual
knowledge in Real Analysis. The need for such a test arose following our study on Peer
Instruction (Bauer, Biehler, & Lankeit, 2023). In that study, we compared two different
variants of Peer Instruction: the “classic” implementation of ConcepTests with voting
and peer discussion as described by Crouch and Mazur (2001), versus ConcepTests
with voting but without peer discussion, instead with a more detailed explanation by
the tutor. Somewhat surprisingly, we found that there was no significant difference
between the variants in the results of the final exam. While exam results are a common
indicator of academic success, they have limitations as a measurement tool: In addition
to the conceptual knowledge that a method such as Peer Instruction aims to foster,
written examinations also test other (e.g. computational) skills. Additionally, exam
conditions, including time constraints and potential anxiety, can affect students'
performance. We believe a test evaluating conceptual knowledge beyond exam results
Is beneficial and we are therefore developing a test aimed at Real Analysis concepts.

In the present paper we address the following questions: (Q1) On which theoretically-
based design principles can the construction of conceptual questions for Real Analysis
be based, and what do such questions look like? (Q2) What do experts think about the
suitability of these questions and what are the results when the test is used in a pilot
run in standard Analysis courses at different universities? In addition to our current
purpose, we see it as a long-term goal to provide a test that can be used to investigate
teaching innovations aimed at conceptual knowledge. Lecturers in the classes of our



pilot tests also appreciated the test as a formative assessment tool when they
administered it and then discussed the results with their students.

BACKGROUND
Conceptual Knowledge

The distinction between conceptual and procedural knowledge has received much
attention in mathematics education. As Hiebert and Lefevre (1986) point out, the
discussion goes back at least to the end of the 19th century, when a focus on
understanding (McLellan & Dewey, 1895) or skill development (Thorndike, 1922) was
advocated. In the 20th century, the discussion sometimes continued in somewhat
different terms and with different emphases, such as semantics vs. syntax (Resnick,
1982) or principles vs. skills (Gellman & Gallistel, 1978). In our project, we follow
Hiebert and Lefevre (1986), who define conceptual knowledge as “knowledge that is
rich in relationships” and as “a connected web of knowledge, a network in which the
linking relationships are as prominent as the discrete pieces of information®“(p. 3-4).
By definition, a piece of information can be conceptual knowledge only if the holder
is aware of its relationship to other pieces of information. In this vein, Anderson and
Krathwohl (2001) characterize conceptual knowledge as “interrelationships among the
basic elements within a larger structure that enable them to function together” (p. 29).

The Idea of Concept Inventories

In physics, the “Force concept inventory” (FCI) by Hestenes et al. (1992) is a well-
known conceptual knowledge test for (part of) classical mechanics, where it probes
qualitative preconceptions of students about the concept of force. The FCI has been
widely used in physics education. For instance, Crouch and Mazur (2001) prominently
employ it in their study on the effectiveness of Peer Instruction: They administered it
in their courses over several years at the beginning and end of the term to assess
students’ conceptual mastery. In mathematics, the idea of the FCI was taken up by
Epstein (2007, 2013) through the development of the “Calculus concept inventory”
(CCI), which aims to test “conceptual understanding of the most basic principles of
differential calculus” (Epstein, 2013, p. 1080). The task content of the CCI is oriented
towards calculus courses in the Anglo-Saxon tradition, which differ significantly from
introductory courses called “Analysis” at German universities. The latter courses aim
at a systematic theory construction based on the epsilon-delta definition of limits and
continuity and rigorous proof. For example, theorems such as the Intermediate Value
Theorem or the Mean Value Theorem are rigorously proved in these courses on the
basis of the completeness axiom of real numbers. In terms of mathematical style, these
courses are similar to Real Analysis courses in Anglo-Saxon universities.

Conceptual Knowledge Required in Exercise Tasks

What lecturers require of students in terms of procedural or conceptual knowledge is
particularly evident in the tasks that are set as homework. Two recent studies have
examined homework assignments in mathematics courses at German universities and



classified them according to their design characteristics: Weber and Lindmeier (2020)
studied 277 tasks from various mathematics lectures. Wlassak and Schoneburg-
Lehnert (2022) focused on assignments to lectures on “Analysis I’ courses and studied
530 homework tasks from lectures at different universities. Both studies looked at the
numerical proportion of procedural and conceptual or proof-related tasks. Wlassak and
Schoneburg-Lehnert (2022) found significant differences between universities.
Overall, both studies agree that instructors set about 50 percent conceptual (or proof
tasks) and 50 percent procedural (resp. schematic applications or use of theorems for
calculation) tasks. All these tasks require extended written answers. In contrast, Bauer
(2019) developed short conceptual multiple-choice tasks to be solved (mostly
mentally) for Analysis | and Il in the tradition of short Peer Instruction tasks focusing
on conceptual knowledge. They are suggested as alternative tasks for homework, or
Peer-Instruction tasks in the context of lectures and tutorials.

TEST CONSTRUCTION
Aims and Scope of the Test

In the test discussed here, we focus on conceptual knowledge. Much as in physics, we
would probe procedural knowledge by a separate test: For instance, Crouch und Mazur
(2001) use the FCI to capture conceptual knowledge, while they employ the
“Mechanics Baseline Test” (MBT) by Hestenes and Wells (1992) for quantitative
problem-solving. We aim to design a test of the conceptual knowledge that
introductory courses to Real Analysis in Germany (“Analysis 1”°) aim to teach. Since
we want to construct the test to fit as many existing courses as possible, we have
focused on content widely agreed to be included in such courses. Like Wlassak and
Schoneburg-Lehnert (2022), we based this on standard German textbooks and decided
on the following contents: (A) completeness of the real numbers, (B) convergence of
sequences of real numbers, (C) convergence of series of real numbers, (D) limits and
continuity of functions of one real variable, and (E) differentiability of functions of one
real variable. The section on limits and continuity, for example, contains as subtopics
the sequence criterion and the epsilon-delta criterion for limits and continuity,
examples and counterexamples, theorems concerning limits of sums, products, and
quotients, as well as the Intermediate VValue Theorem and the theorem about maximum
and minimum of continuous functions on compact intervals.

The test thus covers essential, but certainly not all, topics of one-dimensional real
analysis as taught at universities in Germany and many other countries. We excluded
“integration” as it is often covered first in “Analysis 2”, varying by university. Even
within the existing topics, there are more subtopics than we can cover with our items
because of the naturally limited question pool of such a test.

Design Principles

We constructed the test as a multiple-choice test of 30 minutes in length with the
following a priori design principles:



(DP1) The test items relate to definitions and theorems of one-dimensional real
analysis. They do not simply test memory for the formulation of definitions or
theorems. Instead, they require either their application to a particular situation
or to a concrete example, or their connection to other concepts and theorems.

(DP2) The test items are constructed so that they can be solved “in the head” without
the need to use symbols and text on a sheet of paper. In addition, (a) they do
not require complex mental computations (which would involve procedural
knowledge), and (b) they do not require multi-step reasoning (as involved in
more complex proof construction).

(DP3) The distractors are chosen based on beliefs about typical students’ intuitive
misconceptions or misunderstandings, based partly on research and partly on
teaching experience.

DP1 is based on the understanding of conceptual knowledge as knowledge that is rich
in relationships to other pieces of knowledge. DP2 distinguishes the knowledge to be
tested from procedural knowledge, as well as from knowledge needed for proof
construction. We are aware that such tests will evoke students’ “fast thinking” mode
(Kahneman, 2011) and that giving the students more time and paper and pencil would
more frequently evoke “slow thinking” modes with (hopefully) more correct solutions.
However, we have selected those domain facets where we think giving correct and fast
answers 1s an important component of students’ competencies. As far as conceptual
aspects and specific misconceptions are concerned, we build on Bauer (2019).
However, while the tasks there are constructed with the intention of providing
opportunities for discussion (e.g. in the context of peer instruction) and for conceptual
engagement during the learning process, the current tasks are intended as quick testing
opportunities.

Analysis of Selected Test Items

Regarding the subject of continuity, the test contains five tasks. To give an idea of the
type of questions asked, we show three of these tasks (P3, P6, P7 in our terminology)
in Figure 1. For reasons of space, we subsequently focus on P3, where we carry out a
detailed a-priori analysis and discuss the empirical results below.

We now analyze P3. We describe possible solutions and difficulty-generating elements
of the task; in doing so, we “decompress” the task in the sense of Ostermann et al.
(2015, p. 54), i.e., we identify the relevant mathematical concepts and their relations
that are required in possible solutions of the task. Task P3 relates to the definition of
continuity. As for the individual items:

P3(1). The property in Item 1 is sufficient (even equivalent) to infer the required
continuity (answer: yes) because it expresses the epsilon-delta criterion for the special
case of the point 0. One needs to know the criterion and relate it to the given property,
I.e., recognize that the property arises from the criterion by (mentally) replacing both
xo and f(x,) with 0.



P3. Let f: B — R be a function with f{{] = 0. We would like to prove that f is
continuous in 0. Can this be concluded from the following statements?

1) For every £ = 0 there is a & = 0 such that for all x € B with
)
x| < &, the inequality |f(x]| < £ holds. Oyes 0O no

(2) For every £ = 0 there is a n € [ such that for all x € K with
x| < :T the inequality [f(x)| < £ holds. Oyes 0O no

I [ T TR [ c M
(3) We have nll_l:l;lcnfl_ +1 =10 and n]l_:nl fl—5)=0. Oyes [ no
(4) There is an £ > 0 such that for all x € [—&, £] the inequality

If{x)| < x* holds. Oyes [ no
P6. Assume that we know about a function f: [0,1] — R that f(0) = —1 and
f(1) = 1 hold. Can we conclude from the following statements that f has a zero?
(1) f is continuous. Oyes 0O no
(2) f is strictly monotonically increasing. O yes [ no
(3) fis a polynomial function. Oyes 0O no
(4) f is differentiable. Oyes 0O no

P7. Are the following statements true for all functions T:[0,1] = R 7

(1) If f has no maximum, then f is not continuous. Oyes 0Ono
(2) If f is not continuous, then f has no maximum. Oyes 0O no
(3) If f has no maximum, then f has no minimum. O yes [ no
(4) If f is continuous, then T is bounded. Oyes [Ono

Figure 1. Three tasks on the topic of continuity

P3(2). The property in statement 2 is sufficient (even equivalent) to infer continuity
(answer: yes). The epsilon-delta definition is fulfilled with § = 1/n. Conceptual
understanding of continuity could include that the existence of a neighborhood of x is
required for which f(x) lies in a neighborhood of f(x,). This is more general than the
syntactic specification with “e and §” and directly yields that a neighborhood can be
specified with £1/n. One difficulty-generating feature here is that the statement looks
very similar to the epsilon-delta definition of continuity but has a prominent
discrepancy using 1/n instead of §, where the existence of a large n instead of a “tiny”
6 isrequired. Students who look superficially for an “equivalence” on a syntactic level
might find these two expressions too different to be logically equivalent. They might,
therefore, not try to think further conceptually that continuity is a consequence of the
given property. Also, they might think that requiring the existence of a § is a stronger



condition than the existence of “only” 1/n, and they might, therefore, think that the
condition is necessary but not sufficient.

P3(3). The property in statement 3 is not sufficient to infer continuity (although it is
necessary) (answer: no); it refers to the sequence criterion for continuity. A difficulty
here is that one must be aware that the sequence criterion requires the convergence of
(f (x,)) for all sequences (x;,) that tend to zero. Generally, the convergence of special
sequences is necessary but not sufficient for continuity. A rigorous proof that it is not
sufficient would require a counterexample. In usual lectures, the all-sequences criterion
for limits is stressed and contrasted with school-mathematical argumentation, where
using “typical” sequences such as (+1/n) is often considered sufficient. This
conception might persist among students.

P3(4). The property in statement 4 is sufficient to infer continuity (answer: yes). The
difficulty-generating feature is that the formulation is very different from the definition,
and students may take this for a quick answer “no”. An additional difficulty-generating
feature is that € in this statement has quite a different role than ¢ in the definition of
continuity. If students only look at the statement on a superficial level and search for
structural similarities, they might find that it is not enough that “an ¢ exists” because
they know that in the definition, a certain condition must be true for every €. There are
various ways to see that the property is sufficient: Arguably, the most conceptual
argument uses that f(x) is squeezed between x2 and —x?, both of which tend to zero;
thus f(x) tends to zero, too (Squeeze Theorem). Alternatively, one can argue directly
with the epsilon-delta criterion: Since the function x — x?2 is continuous and |f(x)| is
bounded by x?, the same delta works for f as for x2. Another alternative is to argue
with sequences: For a sequence (x,,) that tends to zero, |f(x,,)| is bounded by x,,? for
large n; since the latter tends to zero, f (x,) also tends to zero.

As this analysis shows, the items involve the application of the concepts to special
situations (special points, concrete sequences, concrete functions) or they refer to other
concepts and theorems (in this case the sequence criterion or the Squeeze Theorem)
(DP1). Also, it shows that the task can be solved “in the head” without any calculations
(DP2). Statement 3 considers a common misconception (DP3).

Content Validation

As JenfRen et al. (2015) point out, content validity is an important quality feature of a
test. It serves to support the validity of intended test score interpretations and, to this
end, addresses the question of “the extent to which the content of a test or the items of
which it is composed actually capture the characteristic of interest” (Hartig, Frey, &
Jude, 2008, p. 140). In our project, we conducted expert surveys to ensure this. We
selected five instructors at different German universities as experts. All but one of the
experts were well familiar with the test items, as they had used the test (as part of a
pilot implementation) in their course “Analysis 1” and had discussed the results with
their students. The survey was conducted at the item level (cf. JenRen et al., 2015, p.
14) in the following way: The experts were presented with the tasks, along with a



description of the intention pursued by each content area; they then answered for each
item the question “How well does this item fit the intention of this domain?” on the
four-point Likert scale “very poor / poor / well / very well”. In addition, they could
comment on each item (optionally) if they rated it as “poor” or “very poor”. All five
experts answered “very well” for tasks P3 and P7. For P6, four responded with “very
well” and one with “well”. For each content area (e.g., “Limits and Continuity”), they
also answered the question “Do the previous tasks cover the most important facets of
this area?”” on the four-point Likert scale “no / rather no / rather yes / yes”. Four experts
answered this question with “yes” and one with “rather yes”.

COLLECTION OF STUDENT DATA IN SEVEN COURSES

Data were collected by administering two different tests, each focusing on specific
mathematical content areas. The first test focused on real numbers, sequences, and
series, while the second test focused on limits of functions, continuity, and
differentiability. Data collection took place during the summer term of 2022 (in one
“Analysis 17 course) and the winter term of 2022/23 (in six “Analysis 1”7 courses). A
total of 391 participants took the first test across seven courses offered at six different
German universities, while 336 participants took the second test across the same
courses. Both tests were administered online via “Lime Survey,” with students
completing the assessments individually within 30 minutes during their respective
“Analysis 17 lecture or tutorial group sessions, as determined by their lecturers. The
timing of the test administrations varied, with the first test taking place between early
December 2022 and mid-January 2023, and the second test taking place between mid-
January and the end of February, depending on when the respective topics were
completed in each course.

EMPIRICAL VALIDATION -RESULTS

We present the results for the three shown tasks in Table 1. It shows the total
percentages of participants who answered the respective items correctly.

Table 1: Percentage of participants (N = 336) with correct answers by item

Task P3 P6 P7
ltem o @ |6 @O @ |6 @O @ (6 @
% Correct 81 44 46 17 76 57 54 68 33 74 74 51

In addition to the total percentages reported in Table 1, we found considerable variation
between courses, which however are not significant at the 5% level. The relatively
small sample sizes in the courses seem to account for the variability. We consider this
to be a weak indication that a strong “course effect” does not exist.



INTERPRETATION OF RESULTS

The data contain many interesting results for the three items shown, but, we will
continue to focus on P3, for which we have presented an a priori analysis. We expected
P3(1) to be the easiest item (which it was), but we were surprised that only 81% got it
right, given its technical and conceptual simplicity. P3(2) and P3(3) are slightly below
the “guessing level”. These results show the expected higher level of difficulty than
that of P3(1). The most positive interpretation is that about 50% of the students ticked
the item out of correct understanding, but if we take the possibility of guessing into
account, it would be less. In other words, we can identify deficiencies in conceptual
understanding that we anticipated in our analysis. Our data show how common this is
among our course participants in Analysis I. Comparable data do not yet exist. We
expected P3(4) to be the most difficult item, which it was. The percentage of 17%
strongly suggests that the wrong answer was not chosen by mere guessing, but some
of the reasons for the wrong answer we identified above may be responsible for this
poor result.

Another question is, how important is it for students in an Analysis | course to be able
to give correct answers under the time constraints we imposed? As described in the
content validation section, our lecturers found the items well or very well suited.
However, it is an open question what can be done in a course to achieve better results
and whether the course time needed for such support would be justified as compared
to the many other objectives of such a course. Subsequent interviews with lecturers
may shed more light on this issue. We expect that working on the misconception P3(3)
is essential for a deeper understanding of continuity and the concept of limits of
functions. P3(2) may require training in more careful reading and conceptual
interpretation of formal statements. Solving P3(4) seems to be at a higher conceptual
level than basic epsilon-delta arguments and involves qualitative insights that are also
relevant in other contexts.

DISCUSSION AND CONCLUSION

In this paper, we have reported on a test designed to capture conceptual knowledge in
real analysis. Experts, who validated the test content, found the items to be well or very
well suited to the domain in question. As we showed in the previous section for task
P3, the results provide highly interesting information about students’ conceptual
knowledge (or possible lack thereof). The explanatory hypotheses we have formulated
suggest a number of further studies focusing on specific content issues. More
qualitative research is needed to investigate the thought processes that lead students to
wrong or correct answers. The results of our test for this and all the other items suggest
directions for possible research. The analyses we conducted for P3 can similarly be
applied to the remaining test items. In P6, for example, it is striking that even for the
basic item (1) the solution rate is below 80%, which raises the question of further
investigations as to whether the students had not yet sufficiently processed the content
In question at the time of the test or whether there are more fundamental difficulties
here (e.g. in the sense of epistemological obstacles). From a methodological point of



view, it is an interesting open question to what extent the test results correlate with the
results of final examinations, which usually also include procedural tasks and in which
additional factors (such as time pressure) play a role.

NOTES

Author note: The authors played equal roles in the research and publication of this
study. Correspondence to this article can be addressed to either of the authors.
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In this paper we investigate the issue of change of meaning due to semiotic
transformation in Calculus teaching activities involving Dynamic Geometry
Software. First, we present a phase of a tutorial targeted to students at the transition
between secondary school and university, designed by a pre-service teacher in a
course of Didactics of Infinitesimal Calculus. In the tutorial, the students could carry
out explorations in a DGS structured environment (GeoGebra Applet) to answer
questions about tangent lines and on concept of local linearization (micro-
straightness). We analysed the transcripts of the interviews, the sheets and the
researcher’s notes collected during an implementation of the tutorial activity. We
present and discuss the case of one student who experienced a change of meaning.

Keywords: Digital and other resources in university mathematics education;
Teaching and learning of analysis and calculus; Change of meaning; Dynamic
Geometry Software; derivatives.

INTRODUCTION

In this paper we investigate the issue of change of meaning due to semiotic
transformation (D’Amore et al., 2012) in Calculus tasks involving Dynamic
Geometry Software (DGS; in this case, GeoGebra). The DGS provide very relevant
tools to support students’ learning processes of conceptualization, that, in
mathematics, is strictly related to the semiotic activity. In Calculus teaching, DGS
can be relevant mediators between the experience of the subject and the visual
representation of mathematical objects; a very interesting case is the one of functions,
with particular attention to the interaction between the local-global points of view
(Maschietto, 2008).

After designing a research-based tutorial including a GeoGebra Applet, we tested it
with students at the transition between secondary school and university (grade 12).
We analysed the data collected during an implementation of the tutorial activity. We
focused on students’ sentences referred to semiotic transformations and to the
meaning of the mathematical objects at stake (e.g. curves and straight lines).
Moreover, we searched for the students’ references to the actions performed during
the interaction with the DGS (e.g. to zoom, to compare representations in different
sides of the screen, to insert analytical expressions in the algebraic interface).

In this paper, we present and discuss the case of one student who experienced a
change of meaning due to a semiotic transformation carried out with a DGS.
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THEORETICAL BACKGROUND

D’Amore et al., (2012) proposed an original networked semiotic perspective on
learning processes, based on Duval’s and Radford’s semiotic approaches to
mathematics education (Duval, 1995; Radford, 2008) coming to introduce the notion
of change of meaning during semiotic transformations, that occurs when “each new
representation has a specific meaning of its own not referable to the one of the
starting representations, even if the passage from the first to the second ones has been
performed in an evident and shared manner” (D’Amore, et al., p. 37). If this change
of meaning occurs, the students do not recognize the referential object, thus their
learning is interrupted, and they feel confused. In Duval’s theory (1995) the semiotic
transformations are classified from a structural point of view in two main categories:
treatment, that consists of transformation within the same semiotic system, and
conversion, that relates representations in different semiotic registers.

The authors stress that the dichotomy treatment/conversion does not allow to explain
the phenomenon of the change of meaning completely. Each passage gives rise to
forms or symbols to which a specific meaning is recognised because of the cultural
processes through which it has been introduced (D’Amore et al., 2012; Radford,
2008) and are not only results of correct codified application of rules within or
outside the semiotic system, but students need to re-assign a meaning after the
transformation. The main need of the students is to keep control on the meaning
connecting the new sign to a generating significant situation that they can refer to,
and that was experienced also with their perceptions (sensuous cognition, Radford,
2013), becoming part of their ways of reasoning and acting.

RESEARCH PROBLEM AND QUESTIONS

In this paper we focus on the design of activities that could create meaningful
contexts for students to develop experiences where to ground their meaning of
derivative, and we investigate the possible phenomena of change of meaning
occurring in the process of conceptualization of the derivative in DGS environments.

Our research question is:

1- What kind of change of meaning occur due to the use of DGS to perform the
semiotic transformation in the case of local linearization of curves in a pre-
Calculus activity?

LITERATURE REVIEW

The activity aims to introduce the derivative of a function at a point not only
algebraically, but also by considering its visual aspects; therefore, tangent lines have
a crucial role in it. Of course, as several studies suggest, this approach could be
challenging:

e Students meet tangent lines in different contexts - while studying Euclidean
Geometry or Analytic Geometry for example - and develop a concept image
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which can be an obstacle to them when the adoption of a different point of
view, such as the analytical one, is required (Biza et al., 2008).

e The above-mentioned concept image is resistant to the analytical definitions
that students encounter (Biza, 2011).

e Students seem to prefer handling derivative algebraically rather than relying on
its visual aspects; furthermore, it appears that the graphical interpretation of the
definition of derivative is not immediate (Asiala et al. 1997).

e Several episodes of confusion between derivatives and tangent lines’
relationship have been observed and reported (Amit & Vinner, 1990).

Yet, the results obtained by Biza et al. (2008) suggest that a reciprocal influence
between tangent line and derivative concepts may be the key to success. Furthermore,
the choice of working with tangent lines gives the possibility to introduce students to
what has been called the “global/local game”, typical of Calculus.

DESCRIPTION OF THE TUTORIAL ACTIVITY

The aim of the task design was to develop an activity which could help students in
the meaning-construction of the derivative concept. First, we carried out that a deep
and careful study of examples and findings from University Mathematics Education
research could be a good starting point to achieve this goal. The activity proposed
was inspired by Maschietto (2008). In the forthcoming sections, a more detailed
description of Observation phase is provided. We omit the details of the other phases
for brevity’s issues.

Observation phase: Description

Observation phase aims to give students the possibility to encounter and acknowledge
Micro-straightness phenomenon (MS), which is defined by Maschietto as “the
property of some graphical representations to seem straighter and straighter when
zooms around their points are successively performed” (Maschietto, p. 209). It is an
exploration activity and involves the employment of a purpose-built GeoGebra
Applet: “Functions closely”.

The Applet allows users to insert the analytical expression of a function, the
coordinates of a point and choose a value for the variable “zoom” from 1 to 20. On
the screen, the inserted expressions will appear on the left, the global representation
of the function in the centre and the zoomed representation in the neighbourhood of
the selected point on the right. The data can be modified any time by the users.

Students are supposed to be divided in small groups (2 or 3 group members). Then,
each group is given a list of couples - each composed by a function and a point
belonging to its graph (F-P couples) - and is asked to “explore” them using the zoom
provided by the Applet. For every couple, the groups are tasked with sketching the
zoomed representation for at least three different zoom’s values in their notebooks.
Finally, the groups are invited to compare the results of their explorations and share
their observations with the rest of the class; of course, during the pilot
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implementation of the tutorial the students could not try this last task, as she worked
on her own.

F-P couples are chosen so that some representations will get straighter as zoom’s
value increases (MS) while others will not. Furthermore, some of the functions have
been selected because in the next phases of the activity they could be helpful in
developing potential evolutions of students” meanings of tangent line due to potential
conflicts between the cultural meaning assigned to different representations. The
expected outcome of this phase is the acknowledgement by the students of the MS
phenomenon as a property of some — yet not all — functions.

Observation phase: comparison with the literature

Observation phase’s development was strongly inspired by Maschietto (2008), Biza
(2011) and Biza et al. (2008).

Maschietto’s article (2008) - providing an analysis of a teaching experiment
involving derivatives, tangent lines and “global/local game” - was crucial to design
the tasks, carry out the experiment and foresee how students could deal with the task.

Biza’s works (2008; 2011) highlight the presence in some students’ concept image of
tangent line of features - coming mainly from Euclidean Geometry or Analytic
Geometry environments - which tend to be dominant over the definition based on the
derivative concept. Her articles deeply influenced our “adjustments” of Maschietto’s
tasks to our activity’s purposes. As far as Observation phase is concerned, they
played a crucial role in the choice of functions which could trigger potential conflict
factors in students’ concept image of tangent line.

Similarities Differences
- Aim: acknowledge- - Use of a purpose-built GeoGebra Applet.
ment of Micro- - Global representation always displayed
straightness (MS) on screen.
phenomenon by stu- - Choice of functions and points that could
dents. give rise to potential conflict factors in
- Tasks. students’ concept image of tangent line.

Table 1: Similarities and differences with Maschietto’s first session (2008)
DATA COLLECTION AND ANALYSIS

We have at our disposal three different kinds of data — of course after asking
students’ permission to use them for research purposes.

1. Written materials, consisting of the sheets of paper with the observations and
the drawings that students made during the activity.

2. Recorded materials, consisting of the recording of a post-activity conversation
between each student and RL.

3. Researcher’s notes (by RL) taken during the students’ exploration, including:
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a. Some students’ quotations.
b. Some observations about the time students dedicated to the exploration
of certain functions.

The case of Sofia

Sofia (fictional name) is a sixteen-year-old girl who attends the third year of a
Chemistry-oriented Upper Secondary School in Italy. She has the highest scores in
her class, and she made use of some advanced mathematical concepts — namely,
limits, even though she was not given the formal definition - in her school
experience. She accepted to take part in our pilot study and try the first phase of our
tutorial — Observation - to help us improving the tasks’ formulation before an
implementation in an actual class.

Sofia had at her disposal a laptop, sheets of paper and a pen. RL has been sitting next
to her, without interfering, for all the duration of the Observation phase - in case she
had problems with the GeoGebra Applet or with the comprehension of the task.

Data analysis
In the next subsections we will explicit our data analysis and interpretation.

1. Why do we state that Sofia did not acknowledge the micro-straightness
phenomenon?

In Sofia’s written materials there are a lot of references to aspects closely related to
MS, but her post-activity comments and her attitude during the exploration make us
think that she did not interpret the phenomenon in the way we would have expected.

During the activity Sofia observed that straight lines sometimes appeared on the
laptop’s screen after zooming, but she did not do, say or write anything that led us to
think that she was really appreciating MS. Unlike the examples provided in literature,
she did not seem to consider it as a property: for instance, she did not look surprised
when she came across functions that did not behave as the previous ones, such as
f(x) =x%—=3|x|atA = (0,0) or f(x)=|x|atA = (0,0). Another clue in this
direction can be found in Sofia’s written materials: in the description of some
functions, she did not say that they all looked like a straight line but that they
resembled “the previous one [“One” here refers to the previous function]” as if
“straightness” was not the most important thing to notice at that moment.

Sofia’s post-activity comments and written materials are the most important evidence
that made us think that she did not acknowledge MS; in particular, the way in which
she used the words “straight line” and “curve” played a crucial role in our deduction.
In the next part of this section, we will explicit our interpretations of Sofia’s post
activity comments. Sofia’s written materials underwent a similar analysis. We omit it
here for brevity’s sake.

I: What can you tell me about your exploration? Did you see something new,
or did it all go as you imagined?
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[17 seconds of silence]

S: [Almost muttering] Well some of them [the curves], well, you could
understand they didn’t change and [Little pause] well that is because the
curve was really wide.

When asked to describe her exploration experience, Sofia did not speak about straight
lines, but about curves and effects that zooming had on them.

Straightness does not seem to be the protagonist of her observations: it is not even the
first thing that comes to her mind.

I Really wide. [Little pause]. What do you mean when you say that they
didn’t change? What did you see when nothing changed?

S: And well [Pause and softly muttering] a piece of the curve [seconds of
pause] the point [Pause] | mean on the curve so [Few seconds of pause] if
you analyse it in a small part, it does not look like a curve, because it looks
like a straight line. [...] [Interrupting, raising her voice] Because it wasn’t
that curved.

Straight lines appeared later, when Sofia was asked to explain what she meant exactly
by “nothing changed”.

Straight lines come after curves and zoom operations again in Sofia’s speech;
furthermore, the way in which she concluded her thought make us think that with the
word “straight line” she wanted to highlight “non curviness” rather than
“straightness”.

K What about this one? [Pointing the function f(x)=2x at A= (1,2)]
S: [Pause] Because it is a straight line.

The second time Sofia used the word “straight line” was to describe what was
happening on the screen, while she was dealing with an actual straight line.

The fact that Sofia said “straight line” is not enough to conclude that she
acknowledged the micro-straightness phenomenon, as she may have used these words
just with a descriptive purpose.

I: Ok. So [Pause] you chose the functions which changed after you used the
zoom, right? [...] And what was the change?

S: Well [Little pause] you could understand that it was a curve because you
[Pause] enlarged them just a little. [Seconds of pause]. | mean [Pause] if
you enlarged them too much you couldn’t see it was curved.

When asked to clarify for the second time what she meant with “change”, Sofia spoke
about curves and zoom operations but did not mention straight lines.

Sofia’s words make us think that to her the lack of “curviness” was much more
significant than “straightness”.
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I: [Taking Sofia’s written materials and reading aloud descriptions of
functions 4 and 5].

S [Interrupting] Because it didn’t change. [Little pause]. I mean the image
always looked like a straight line while on the other side it looked like
[Silence].

The third — and last — time Sofia said “straight line” was to explain what she had
written about functions 4 and 5 during the exploration phase of the activity.

Again, we cannot interpret Sofia’s words as an acknowledgement of MS. The fact
that Sofia wrote: “It seems that the point belongs to a straight line” in the description
of function 5 lead us to think that in this case she may want to explain what she had
written previously rather than giving importance to “straightness”.

K Ok. Let me ask you one final question. Do you think it is peculiar that some
functions look like a straight line if you look at them in a neighbourhood of
one of their points?

[40 seconds of pause, Sofia read her work again]

S: Boh [Pause] then it’s a property I guess. [Pause, then muttering] Because it
Is a point [Pause] it is the centre of the curve [Pause] | mean the centre of
the point where the curve changes direction.

In this last phase of the discussion, the interviewer asked explicitly to Sofia if she
found peculiar that some functions turned into almost-straight lines. Sofia, in her
answer, did not mention straight lines but spoke about curves. Sofia’s last comment
led us thinking that she is “accepting” MS as a fact rather than acknowledging it: she
uses words such as “Boh” and “I guess” which expresses doubt and then tries to
explain “straightness” using “curviness” - a concept she seems to value a lot.

Our interpretation, based on the data analysis provided above, are that:

1. Sofia accepted - rather than acknowledging - MS phenomenon.
2. Sofia gave more importance to “curviness” - or better “non-curviness” - than to
“straightness”.

Where do we see “Change of Meaning” in Sofia’s behaviour?

In D’Amore et al. (2012) several examples of change of meaning are provided. We
report one of them to confront it with some excerpts from Sofia’s written materials.

Students, divided in groups, were asked to write in the algebraic register the sum of
three consecutive natural numbers. One group answered (n—1) + n + (n+1). Then, a
transformation was performed and 3n was obtained. The last expression, however,
was interpreted differently by the students, who recognised it as “the triple of a
natural number”; furthermore, they stated that the new form could not represent the
sum of three consecutive natural numbers, but only the sum of three equal numbers.
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f(x) =x?>+3xat A= (0,0)

“No, being it a point on a straight line [It is a
parabola], it doesn’t seem to me that changing
the zoom adds some new data”.

f(x) =sin(x) atA = (g, 1)

“If you look at it without the zoom it seems
that the point belongs to a curve, while if you
use the zoom it seems that the point belongs
to a straight line”.

f(x)=+v1—x%2atA=1(0,1)

“In order to understand the shape of the curve
you need zoom to be less than 9.”

f(x)=+1—x%atA=(1,0)

“In order to understand that it i1s a curve and
not a straight line, zoom must be less than 8”.

f(x) =+VxatA=(0,0)

“If you choose a zoom greater than 9 it
doesn’t seem a curve, but a straight line”.

f(x) =/Ixl at A = (0,0)

“Until you use a zoom less than 9 you
understand that they are two lines”.

fG) = ¥xatA = (0,0)

“Zoom > 4 1t doesn’t look like a curve”.

Table 2: Excerpts from Sofia’s written materials

From these excerpts it emerges that:

1. Zooming too much results in the impossibility to understand the shape of the
curves, or, better, if what can be seen on the screen is a curve. We value this
observation as another clue towards the great importance that Sofia gives to
“curviness” and we interpret it as a confirmation that the transformation

changes the meaning (from a curve to a straight line).

2. Some zoom’s values have been identified by Sofia as “boundaries” for the
“Loss of Curviness” phenomenon. We interpret these “boundary zoom’s
values” as signals of “Change of Meaning”: before a certain zoom’s value she

a curve, once it is passed “curviness” is lost and

the object is no more recognized as the same, thus she cannot go on in its

can be sure she is looking at

reasoning but a new one shou

We regard Sofia’s situation as similar to the one proposed above: Sofia, like the
meaning to a representation after it underwent a
treatment (zoom with a value higher than the boundary value). We classify zoom as

group of students, gave a different

Id begin, about a new object (a straight line).

“treatment” - from a structural semiotic point of view - because:

e [t was an explicit transformation - since Sofia was told how zoom worked in

the Applet - which does not involve a change of semiotic register.

e Sofia did not give any signs to have moved from the graphic register
throughout all the activity: for example, she spoke about curves — and not
about functions — all the time.
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DISCUSSION

To conclude this section, we continue the analogy between the two episodes by
quoting an interesting observation from D’ Amore et al. (2012)’s article:

From an, so to speak, “external” point of view, we can trace back to seeing the different
algebraic writings as equally significant since they are obtainable through semiotic
treatment, but from inside this picture is almost impossible, bound as it is to the culture
constructed by the individual in time. (ibid., p. 38)

The same could be said for Sofia’s experience: from outside the graphical register, it
seems easy to re-build the connection between the two sides of the screen and,
therefore, between the two representations, but Sofia could not make it: to her the two
were “culturally” separated, since losing “curviness” (not only) to her means losing
the “curve” itself.

"Change of Meaning” could explain Sofia’s missed acknowledgment of MS at a point
of a curve. As a matter of fact, it could be that she did not value MS - even though
she perceived some of the curved lines getting straighter — because it was impossible
from her perspective to make a synthesis between the two sides of the screen. Indeed,
at a certain point, they represented two different objects according to her: curves on
the left, not — curved lines on the right. Hence, the incompatibility of the global and
local representations, due to “Change of Meaning”, could have broken the
relationship between the two points of view, crucial to value MS as significant.

Sofia during the activity said several times that what was happening was “similar to
the previous one”. Her words seem to suit the previous observation: it looks like that
to her the connection between different functions’ right images (local representations,
all resembling straight lines) was stronger than the one between left and right images
(global and local representations respectively) of the same function.

CONCLUSION

In our pilot study, we identified an interesting case of change of meaning due to a
semiotic transformation carried out with a DGS in semiotic transformations in the
case of local linearization. In particular, we observed it in the case of treatment within
the dynamic graphical register available in GeoGebra. Sofia’s experience is
particularly interesting because the outcomes were different from literature-reported
ones (Maschietto, 2008) and unexpected to us: she did not seem to acknowledge MS
phenomenon, and the cause is the change of meaning.

Our first contribution to existing literature concerns the change of meaning due to
treatments in DGS; indeed, D’Amore et al. (2012) stressed that treatment is more
rarely considered source of difficulties for students, while, as they showed in case of
algebraic treatment, the process of attribution of a new meaning to representations is
necessary also in this case, and sometimes even more difficult than conversion.

In this case, the new cultural meaning assigned by the students cause a change of
mathematical object (from curve to straight line) that is incompatible with her
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personal perception (‘a curve cannot be straight’). Her choice of limiting the zoom’s
values could be interpreted as a “limited” acceptance of zooming as a legitimated
strategy to learn something new about curves, since it leads to betray the “essence” of
a curve,

This issue is specific of DGS and open to a new research question, that we will
investigate in the future. Indeed, in DGS, the semiotic transformation of the
representations cannot be completely decided by the students; the transformation
tools are given as “black boxes” thus the students’ attribution of a new cultural
meaning is limited by a sort of “fixed behaviour of the representation”. This is not the
case of paper and pencil environments. The use of DGS could thus lead to new
phenomena of change of meaning like the one we observed in Calculus teaching.
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The complexity of mixed methods research — case study of a project on
students’ meanings for the fundamental concepts of calculus
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We report on a project whose aim it is to investigate advanced high school students’
meanings for derivative / rate of change and integral / accumulation in intra- and
extra-mathematical contexts. The project is ongoing with, so far, 725 questionnaires
and 207 interviews. We relate a selection of initial results and raise issues pertaining
to mixed methods research in large-scale mathematics education projects.

Keywords: Teaching and learning specific topics at university, teaching and learning
of analysis and calculus, accumulation, meaning, mixed methods research.

BACKGROUND AND AIM

This paper arose from a project on students’ meanings for the fundamental concepts of
calculus. Students’ personal meanings for mathematical concepts have recently
attracted increased attention. In particular, Thompson (2016) has distinguished what
someone knows about, say, the derivative, from what they mean by the derivative: The
meaning of a student’s understanding is linked to the space of implications (ideas,
associations, explanations, solutions, ...) the understanding mobilizes for the student.

Meanings for the fundamental concepts of elementary calculus that students acquire in
high school may have a crucial influence on their tertiary studies. We take the
fundamental concepts of calculus to be the derivative / rate of change of a quantity, the
(definite) integral / accumulating quantity, and the fundamental theorem. In doing so,
we stress quantitative thinking in extra-mathematical contexts. This may motivate
students, support solving everyday problems, foster interdisciplinary connections, and
showcase the broad applicability of calculus. The primary catalyst for our project has
been the wide dissatisfaction with students' knowledge in calculus (e.g., Kouropatov &
Dreyfus, 2013; Thompson & Harel, 2021). Our project thus also has a didactical
motivation, namely, to pave the way for the development of improved materials and
practices for teaching and learning calculus.

In this paper, we consider the question how to investigate students’ meanings on a large
scale, taking the notion of integral / accumulation as a case study. In particular, we ask
how students’ meanings depend on the context in which a situation is presented.

Several large-scale research efforts on calculus have been undertaken in the past. For
example, Epstein (2013) has designed a Calculus Concept Inventory; Greefrath et al.
(2016) have based their research on Basic Mental Models; we have compared their
approach to ours (Dreyfus et al., 2022) and found them to be substantially different.

While a qualitative approach is the natural way to investigate delicate nuances in high
school students’ meanings, quantitative methods allow for larger samples. We have
therefore decided on a mixed methods approach. Standard approaches to mixed
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methods research (e.g., Creswell & Plano Clark, 2007) propose two options: (A) start
with a qualitative investigation, discover a phenomenon, and then build a questionnaire
to investigate the scale of the phenomenon; (B) start with a quantitative study, and then
interview subjects to gain deeper insights into the results. It has been claimed that
mixed methods research in mathematics education allows for a comprehensive
understanding of complex phenomena (Kelle & Buchholtz, 2015). On the other hand,
even when the rationale for and manner of integrating qualitative and quantitative
components is made explicit (Choudhary & Jesiek, 2016), formulating mixed methods
research questions and linking them to mixed methods data analysis is notoriously
difficult (Onwuegbuzie & Leech, 2006).

DESCRIPTION AND METHODOLOGY OF THE PROJECT

Exploring the nature of students' personal meanings requires fine-grained research with
qualitative methods that allow for iterative adjustments of the research process and
instruments. On the other hand, investigating the meanings of students with different
backgrounds, different teachers, in different schools and even school systems requires
data on a large scale, as do later didactical suggestions, if they are to have more than
local validity. Quantitative methods may be expected to reveal statistical connections;
such connections may in turn be explained by subsequent qualitative study. Hence, a
mixed methods approach has the potential to reveal students' meanings for the
fundamental concepts of calculus at scale.

From prior research we knew some meanings of high school students for derivative
and integral that could be expected. We also knew we wanted to use situations with
and without extra-mathematical context. But we did not know which situations and
which formulations would elicit meanings from students. Pilot interviews with 98 high

The drawing shows a loaf of bread with a slice shown x cm from the left end of
the bread. Which of the following graphs could
represent the volume V of the bread to the left of the
slice as a function of the distance x from the left end
to the slice?

al v} Bl Hx)

Figure 1: Bread loaf item (P. W. Thompson, personal communication, October 16, 2020)

23



school calculus students and teachers allowed us to try a multitude of situations -
mathematical ones, kinematic ones, and everyday ones, with either time or distance as
independent variable — as well as a wide variety of formulations, including graphical
and algebraic ones. Figure 1 presents one example requiring accumulative thinking.

During the pilot phase, we realized that we were unlikely to learn about specific
meanings students might or might not have by asking them to solve problems in a
questionnaire. Thus, we decided to systematically investigate which meanings students
identify with, and in which contexts or situations they identify with these meanings:
We proposed statements of hypothetical students that each express a distinct meaning,
and asked respondents in what measure they identified with each such statement. We
chose meanings discovered by prior theoretical and empirical research (e.g., Sealey,
2014; Zandieh, 2000) as well as meanings that arose in the pilot interviews.

In separate questionnaires, we related to five fundamental concepts: Constant Rate of
Change, Instantaneous Rate of Change, Accumulation Calculation, Accumulation
Function, and Fundamental Theorem of Calculus. In this paper, we focus on
Accumulation Calculation, that is the meanings students associate with what they are
doing when they carry out the calculation of an integral or accumulation. The situation
we used for Accumulation Calculation is presented in Figure 2.

Monday morning at 8:00 the pool was empty. Workers began filling it. The given
function represents the flow of water e e per sscons
into the pool during the first hour .
(3600 seconds), from 8:00 to 9:00.
The flow of water is measured in
litres per second.
1

_ 24 1
fix) = soo,ooox +100x+2

Alona said that using this data, it is i
possible to estimate the amount of water that accumulated in the pool from 8:00
to 9:00. The students discussed the meaning of her statement to them.

Figure 2: The Accumulation Calculation situation

In Figure 2, Alona presents a claim about an everyday situation concerning an
accumulating quantity of water. The pilot interviews showed that students’ meanings
may be different if Alona presented her question about the integral. In a parallel
questionnaire, we therefore replaced Alona’s claim in Figure 2 by “Alona asked what
the meaning of the integral f03600 f(x)dx is in this case”. We refer to these two

questionnaires as the quantity setting (Q) and the integral setting (1).

We adapted the two Accumulation Calculation questionnaires to four different
contexts, making as few changes in formulation as possible. Two contexts were extra-
mathematical: filling a pool (as in Figure 2), and motion on a straight line; the other
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Anna

Ariel

Lina

Sapir

Dino

Vadim

Ron

For me, if we calculate the values of the primitive function of the function
f(x) at the hours 8:00 and at 9:00, the difference between them will give
amount of water that accumulated.

For me, the area between the graph of the function and the x-axis in the
relevant interval gives the amount of water that accumulated in the pool
between the hours at the hours 8:00 and at 9:00.

For me, if we draw vertical lines between the function f(x) and the x-axis,
at each point, and we sum them, we will get the amount of water that
accumulated.

| fixh [Libers per second]

1800
5.0 8 30 ?gg
For me, we take small time intervals on the x-axis and in each interval, we
determine a corresponding constant flow. If we multiply the constant flow
value by the length of the time interval, and we sum all the products, we
will get approximately the amount of water that accumulated.
For example, we can take intervals of length a on the x axis and calculate:

f(0)-a+f(a)-a+fRa)-a+fBa) a+ -

For me, the definite integral from 0 to 3,600 on the given function will
give the amount of water that accumulated.

For me, if we take the values of the given function at every point and we
sum them, we will get the amount of water that accumulated.

For me, if we draw rectangles whose width is a short interval on the x-
axis, and whose height is the height of the given function at a
corresponding point, the sum of their areas will give approximately the
amount of water that accumulated.

fix) [Liters per second]

: 1500 e ' m{;
oo & 30 2. 00

Xlseconds]

[T

s

Figure 3: The hypothetical students’ answers
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two contexts were intra-mathematical: area and formal-mathematical. In total, we thus
had eight Accumulation Calculation questionnaires: 2 settings x 4 contexts. [1]

The questionnaire presented hypothetical students’ answers to Alona’s question. The
seven answers to the situation in Figure 2 are presented in Figure 3. The names of the
hypothetical students were chosen to reflect the intended meanings: Anna —
Antiderivative, Ariel — Area, Lina — Lines, Sapir - Sum of Products, Dino - Definite
Integral, Vadim — Values, and Ron - Rectangles. The hypothetical students’
formulations in Figure 3 were modelled on how actual students of the same general
population as the respondents to the questionnaires expressed themselves (see Dreyfus
et al., 2022, for an example).

We kept the differences between the eight versions of the Accumulation Calculation
questionnaire as small as possible. We made three adaptations:

e Context: for example, for the area context, we replaced “the amount of water that
accumulated” by “the accumulated area”.

e Setting: In the integral setting, we replaced Dino by Ahmed: “For me, the integral
of the function according to x gives an accumulation. In this case, water
accumulates, and therefore we get the amount of water in the pool at 9:00.”

¢ In the area context and quantity setting, we omitted Ariel’s statement because it
was part of what Alona stated.

Students were asked to react to each statement by marking answers to the two Likert
scales presented in Table 1. These two scales were presented immediately after each
statement, with X replaced by the name of the hypothetical student who made the
statement.

To what degree is X’s statement 1 2 3 4 5
correct, in your opinion? Not atall | Notvery | Idon’t know | Fairly | Very
How close is X’s statement to your 1 2 3 4
way of thinking? Not at all Not very Fairly Very

Table 1: Scales used in the questionnaire

When piloting the questionnaires with the second scale only, we found that many
students made their choice based on their judgement of correctness. We then inserted
the first scale to ensure that students answered the second scale based on their way of
thinking. This decision was successful as shown in Table 2. In Table 2, we included all
statements in all 8 questionnaires, except the ones where the respondent chose “3 - |
don’t know” in the first scale. We also combined the negative choices (row and column
“1 or 2”), and the positive ones (row “3 or 4” and column “4 or 5”). Approximately
26% of all responses in Table 2 were “off-diagonal”, the vast majority of them (545
out of 599) being “correct but not my way”’; off-diagonal choices were more frequent
for Lina, Sapir, Vadim, Ron, and Ahmed than for Anna, Ariel, and Dino, presumably
because the latter three statements made simple identifications between integral, area
and antiderivative.

26



Correct | 1 or2 | 4 or 5 | No answer | Total
My way
lor2 558 545 2 1105
3or4 54 1051 1 1106
No answer 1 13 68 82
Total 613 | 1609 71 2293

Table 2: Diagonal versus off-diagonal answers

The 8 Accumulation Calculation questionnaires were administered together with
questionnaires on the other four fundamental concepts, 28 questionnaires altogether.
They were administered to 725 students learning mathematics at the advanced level in
grade 11 or in grade 12, after they studied integration of polynomial and trigonometric
functions. The questionnaires were distributed randomly in each class during
mathematics lessons. Each student answered two questionnaires in about 30 minutes.
Time was not limited. 400 students answered Accumulation Calculation
questionnaires.

SOME RESULTS

As mentioned in connection with Table 2, there are many fewer off-diagonal elements
for Anna, Ariel, and Dino than for the other statements. This raises the question
whether respondents identified more with these three statements than with the others?
Table 3 answers this question for the pool context.

Statement lor2 [3or4 | Noanswer | Total
Anna 28 66 4 98
Ariel 12 84 2 98
Lina 69 27 2 98
Sapir 87 8 3 98
Vadim 71 25 2 98
Ron 56 40 2 98
Dino (Q only) 7 41 0 48
Ahmed (I only) | 29 18 3 50

Table 3: My way in Accumulation Calculation, context Pool (P)

Table 3 shows that many respondents to the questionnaire identify with Anna, Ariel,
and Dino (75£9%); far fewer respondents (24+16%) identify with the other statements.
This may be related to the classroom instruction they got. Typically, teachers might, in
an introductory lesson, relate integral to area and show the area as a sum of rectangles
(Ron), and in the following lessons mainly treat the computation of areas (Ariel) by
definite integrals (Dino) using antiderivatives (Anna).

Differences between the other five statements are small. Respondents seem to identify
with the answers of Lina and VVadim as much as with those of Ron, Sapir, and Ahmed.
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We interpret this as showing that the respondents’ reasons for identification are
simplicity and familiarity rather than depth of understanding. In post-questionnaire
interviews, many referred to the inefficiency of the computations needed by Lina,
Sapir, Vadim, and Ron but only few were disturbed by Vadim’s addition of values or
Lina’s addition of lines. With few exceptions, the picture is similar in the other
contexts.

In pilot interviews, we noticed that students seemed to react differently in different
contexts. This raises, for each statement, the question how many students identify with
each statement in the different contexts and settings. In Table 4, we present
respondents’ identification with Anna’s statement, in the different contexts.

Context | Pool | Motion | Area | Formal
My way
lor2 28 55 29 55
3or4 66 42 68 50
No answer 4 6 3 1
Total 98 103 100 106

Table 4: Identification with Anna’s statement in the different contexts

Table 4 shows that close to 70% of the respondents identify with Anna’s statement in
the Pool and Area contexts, but only between 40% and 50% in the Motion and Formal
contexts. We do not yet have an explanation for these results; in fact, given that students
spend much time in class using antiderivatives to compute integrals in a formal context,
it appears surprising that identification with Anna in the formal context is so low. Post-
questionnaire interviews will be needed to understand these quantitative results.

Parallel questions could be asked for the other 7 statements (other than Anna). Many
other questions could be asked about different frequency distributions, for example
how respondents’ answers depend on setting. Decisions what to examine are not easy.

We now turn to issues that can be investigated by means of contingency tables such as
the one in Table 5, which compares Lina and Vadim. Based on Table 3, one might
expect the distributions for Lina and VVadim to be rather similar since their statements
both consider the integral or accumulated quantity as a sum of numbers rather than a
sum of products, Lina graphically and VVadim numerically.

Vadim | 1 or2 | 3 or4 | No answer | Total
Lina
lor2 224 54 1 279
Jor4 60 47 3 110
No answer 3 0 8 11
Total 287 101 12 400

Table 5: Integrals as graphical (Lina) versus numerical (Vadim) sums of numbers
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Table 5 shows that most respondents (56%) do not think like Lina nor like Vadim. This
IS to be expected (see above, Table 3). More interesting is that among the remaining
44%, most identify with one of them but not with both. Respondents seem not to link
between Lina’s and Vadim’s ways of thinking; here ‘link’ only refers to identification
with ways of thinking, not to a mathematical connection. An only slightly different
situation pertains with respect to the ways of thinking of Sapir and Ron.

Many additional comparison questions between statements could be asked using
similar contingency tables. For Accumulation Calculation we have 7 meanings and
hence 21 contingency tables, and separately for context and setting, we have
8x21=168. Comparisons between contexts and settings yield similar numbers of
additional contingency tables, each of which may raise theoretically or didactically
interesting issues. The question arises how to select which of these issues to examine.

The questionnaires were not intended to and cannot answer deeper qualitative
questions about students’ meanings, but they do raise such questions, for example:

e Given that so many more students identify with Ariel than with Ron (Table 3),
what in their meaning for the area connects to the amount of water or distance?

e What causes many students (almost 30%) to either identify with Lina’s way of
thinking but not with Vadim’s, or identify with Vadim’s way of thinking but not
with Lina’s (Table 5)?

e The frequency, with which the respondents identify with a hypothetical student,
depends on context. Can this dependence be explained by the meanings the
respondents hold?

e Same question about dependence on setting instead of context.

We began carrying out post-questionnaire interviews, 109 so far, most of them before
analysing the questionnaire results. One aim of these interviews was reverse validation,
namely whether interviewees’ meanings for the statements are indeed the ones we
intended. While we cannot yet fully support this, we have no indications to the contrary.

These interviews have yielded results reported elsewhere. For example, Noah-Sella et
al. (2023) interviewed 21 students who also study physics at the advanced level. Many
of them brought up physics without being prompted. Several of them related
mathematics to formulas, algebraic manipulations, and rote procedures as opposed to
physics which they said emphasized understanding. This understanding is often related
to graphical thinking: Students reason co-variationally with graphs and use them to
solve problems. Such qualitative phenomena may lead us back to the quantitative data,
to find out how frequent they are.

DISCUSSION

Our research has led to preliminary conclusions about students’ meanings for the
fundamental concepts of calculus, and more are expected when we will analyse the
quantitative data more thoroughly and link it to qualitative data more systematically.
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However, our research has also raised issues about doing mixed methods research on
students’ meanings in ways that maximize insights for large samples.

In terms of Options A and B, we have adopted both, but neither in the clean way
described in the background section. We started with a catalogue of meanings and used
the pilot interviews to refine that catalogue, as well as to decide on methods and
formulations likely to evoke meanings. Similarly, we did not yet carry out a systematic
qualitative investigation to explain the results produced by the quantitative analysis,
but the post-questionnaire interviews already yielded qualitative results that ask for
further quantitative investigation. We conclude that in complex cognitive-
epistemological research, modifications of options A and B may lead to cycles of
qualitative and quantitative stages, the design of each being determined by results of
the previous one.

Our choices of which quantitative questions to ask, and which not to ask, have been
informed by interviews and theoretical reflections but largely based on intuition. There
IS a need for a systematic yet manageable approach to the selection of educationally
relevant questions. In terms of the introduction, although we have made the rationale
for integrating qualitative and quantitative components in our project explicit
(Choudhary & Jesiek, 2016), we have not yet succeeded in formulating a coherent
collection of mixed methods research questions and linking them to mixed methods
data analysis (Onwuegbuzie & Leech, 2006).

We expect that further methodological considerations will enable us to make the
research educationally productive, and lead to results that inform the design of calculus
instruction at the high school level so that it achieves two aims: Calculus as part of
human culture that interrelates mathematics and the real world; calculus with meanings
for the fundamental concepts that usefully prepare the students for their tertiary studies.

NOTES

1. In the formal context / quantity setting, the function f(x) was introduced as the rate of change of
a function g(x) with g(0) = 0, and Alona claimed that using the given data, it is possible to
estimate the value of the function g(x) that accumulates from x = 0 to x = 3600.
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Abstract: Functional equations are mathematical objects that are defined within the
framework of algebra of functions (i.e. equation involving only the four arithmetical
operations) for which the establishment of solutions most often requires recourses to
methods of proof and proving specific to analysis. In this paper, we focus on the first
Cauchy functional equation f(x +y) = f(x) + f(y) to highlight the role of order
in such process, and to argue that the study of such functional equations is an effective
means of simultaneously developing proof and proving skills and an understanding of
the concepts involved when working with ordered sets of numbers, at university.

Keywords: Teaching and learning of logic, reasoning, and proof; Teaching and
learning of specific topics in university mathematics, Epistemology and didactics,
Order in Mathematics; Cauchy functional equations.

INTRODUCTION

Functional equations are mathematical objects that are defined within the framework
of algebra of functions (i.e. equation involving only the four arithmetical operations:
addition, subtraction, multiplication, and division) for which the establishment of
solutions most often requires recourses to methods of proof and proving specific to
analysis. In this respect, working on these equations is relevant to address issues of
interactions between algebra and analysis. In the cases that we will examine in this
paper, we will highlight the possible role of order in this process. This presentation
falls in a wider project consisting in making more visible the role of order in the French
curriculum. Indeed, order plays a role in many areas of mathematics, as Sinaceur points
out:

A priori or by nature, the notion of order in mathematics is intrinsically neither geometric,
although it is easily represented by the relation "to be situated between...", nor algebraic,
although it is expressed by the relation of inequality, nor analytic, although it is implied in
the notions of limit and convergence. It thus appears in contemporary mathematics as a
transversal notion, present on many of the paths that link one discipline to another.
(Sinaceur, 1992, p.115) [1]

In the French educational system, order is nearly never studied for itself neither at
secondary level nor in early university courses. Moreover, in analysis, its role is often
hidden by the recourse to limits for defining objects (such as Integral) or for proof and
proving theorems (such as the Intermediate value theorem).
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The main goal of this paper is to develop an epistemological analysis to address the
following research question: “In which respect is the first Cauchy functional equation
flx+y) = f(x)+ f(y) a good candidate for shedding light on the possible role of order
at the interface between algebra and analysis?”. Such analysis is a first step for
developing a didactical engineering (Artigue, 1991). In a preliminary section, we
briefly remind the definition of irrational numbers by Dedekind who, according to
Sinaceur (1992) “reduced continuity to order”. In a second section we present some
epistemological issues concerning functional equations in Cauchy (1821) by Jean
Dhombres. In a third section, we focus on discontinuous solutions of the first Cauchy
functional equation f(x +y) = f(x) + f(y). In a fourth section, we present three proofs
that solutions of this Cauchy equation in the class of monotonic functions are linear
functions to enhance the relevance of this functional equation to put on the scene with
undergraduates the role of order at the interface between algebra and analysis. Finally,
we discuss didactic implications and present briefly a forthcoming experiment.

REDUCTION OF CONTINUITY TO ORDER: DEDEKIND’S CREATION OF
IRRATIONAL NUMBERS

The title of this section is borrowed from Sinaceur (1992) who claims in a section
entitled “Reduction of continuity to order” that:

It was undoubtedly Dedekind who, by wishing to provide “a purely arithmetical and
perfectly rigorous foundation for the principles of infinitesimal analysis", highlighted the
structure of the ordered set of R. For him, this means finding a true definition of the nature
of continuity. (ibid, p.110) [3].

We briefly remind here that Dedekind (1872) defines a cut in the set of rational
numbers as a pair (4,B) such that AUB = QANB= 0, and Vx €A VYy €
B,x < y. After having shown that there are infinitively many cuts that are not
operated by a rational number (which he names its incompleteness), he defines
completeness as the property that every cut of a given ordered set be operated by an
element of the set. Consequently, to complete the set of rational numbers, for every cut
not operated by a rational, he creates a new number, an irrational one. He then proves
that the new set is a complete (in the sense above) ordered set. Based on this
construction, the definition of a least upper bound (a supremum) comes: an upper
bound for a given subset M of an ordered set E is an element that is greater than or
equal to any element of M. A least upper bound for M, if it exists, is the smaller among
the upper bounds of M. Given a cut (4, B) in the sense of Dedekind, the unique element
operating the cut, if it exists, 1s the supremum of the subset A, and the infimum of the
subset B. In a complete ordered set E, every bounded above (resp. below) subset of E
admits a supremum (resp. infimum) that is unique. Due to this close relation between
cuts and supremum (resp. infimum), it is not seldom that they are used concomitantly
in a proof: creating a cut, assuming the existence of the supremum (resp. the infimum),
showing that this element is a candidate to have the desired property, and proving it
with order consideration. An example can be found below in this paper for the second
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and third proofs that “if a solution of the Cauchy equation f(x +y) = f(x) + f(y) is
monotonic, then it is a linear function”.

Before moving to the next session, we would like to remind that the property of density
(in-itself) of an ordered set is an important issue when considering the elaboration of
the theory of real numbers: between the discrete set of integers, and the continuous set
of real numbers, there is, among others, the dense (in-itself) incomplete set of rational
numbers; the dichotomy discrete-continuous does not capture the mathematical fact
that there are dense ordered sets that are not continuous (Durand-Guerrier, 2016). Note
that the property “To be dense (in-itself)” for an ordered set is different of the relation
“To be dense in...” between a subset of an ordered set and this set.

THE ROLE OF FUNCTIONAL EQUATIONS IN CAUCHY’S ALGEBRAIC
ANALYSIS

Jean Dhombres, a French historian of mathematics, studied functional equations as a
mathematician at the beginning of his career and published with J. Aczel a treatise
(Aczel & Dhombres, 1989) which deals with modern theory of functional equations in
several variables and their applications to mathematics, information theory, and the
natural and social sciences. In a paper published in 1992, he examines the role of the
four fundamental functional equations studied by Cauchy in the first part of his Course
of Analysis of the Ecole royale Polytechnique (Cauchy, 1821). In a chapter of his course
entitled “Determination of a continuous function of a single variable verifying certain
conditions” [4], Cauchy treats simultaneously the four functional equations conserving
or exchanging addition and multiplication:

(A)@(x +y) =2(x) +P(¥) (B) 2(x +y) = 2(x)P(y)
(©) 2(xy) = @(x) + 2(y) (D) @(xy) = ()P (y)

The first one (A) is the Cauchy equation that we will study in the next sections. In the
class of continuous functions considered by Cauchy, the solutions of (A) are the linear
functions; those of (B) are the exponential functions; those of (C) are the logarithmic
functions composed with the absolute value, and those of (D) are the power function
with arbitrary real exponent composed with the absolute value. The resolution by
Cauchy of the first functional equation (A) 1s made in two times: first algebraic
manipulation leading to the form of the solutions defined on the set of rational numbers
Q; second using the fact that Q is dense in the set of real numbers R and the continuity
of the searched functions, he proves that the only solutions defined and continuous on
R of equation (A) are the linear functions.[5] Although the functional equation had
already been studied before Cauchy, Dhombres (1992, p.28) underlines the novelty and
the fecundity of this method that Cauchy then successfully applied to equations (B),
(C) and (D), and allow him to solve completely in the class of continuous functions the
functional equation: @(x +y) + @(x — y) = 2&(x)P(y), using the density in R of
the set of dyadic numbers. Considering this, Dhombres claims that relying on the set
of rational numbers for solving the first four equations was motivated by the fact that
Q is dense in R, as is the set of dyadic numbers with the standard order. This allowed
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him to fully justify, in the case of continuous functions, that the form established for
rational numbers holds for real numbers, that was previously, and even later often taken
for granted by mathematicians. Dhombres, at the beginning of the paper, wondered
why Cauchy paid attention to the four functional equations (A), (B), (C) and (D). In
the conclusion, he considers that for Cauchy, they were only a transitory step, not goal
in themselves (ibid, p. 48). He also pointed the relevance of solving these equations in
a delimitated class, here the class of continuous functions. This choice provides the
regular solutions that we are used dealing with at the secondary-tertiary transition, with
proofs that are accessible at this level. Considering here the class of continuous
functions, Cauchy embeds the solutions in the domain of analysis. It seems that Cauchy
did not search solutions in class of functions else than the continuous ones. This will
be done later by G. Hamel in a paper published in 1905, that we present in the next
section.

DISCONTINUOUS SOLUTION OF THE CAUCHY FUNCTIONAL
EQUATION: f(x+y) = f(x) + f(y)

In a paper published in 1905, Hamel considered discontinuous solutions of the Cauchy
functional equation f(x +y) = f(x) + f(y) (A). It is known since Cauchy that
looking for continuous solutions, the solutions are the linear functions. In addition, it
1s easy to prove that if the solutions are searched among functions defined on the sets
of rational numbers, then the solutions are linear functions in form f (x) = Kx without
any additional hypothesis on the functions. The question raised by Hamel is: “And
what happens if we don't assume that the solutions defined on the set of real numbers
are necessarily continuous functions?”. In his paper of 1905, Hamel proves the
existence of discontinuous functions solutions of the Cauchy equation (A); he did this
by introducing a basis for the real numbers (named today Hamel Basis) that in modern
terms would be expressed as: “the set R of real numbers is a linear space over the field
Q of rational numbers” (Aczel & Dhombres, 1989, p.19). Moreover, Hamel establishes
that such functions are totally discontinuous:

Each of these discontinuous solutions of the functional equation is totally discontinuous;
in any neighbourhood of any point of the (x, y)-plane there are points of the "curve" y =
f(x) [6]. (Hamel, 1905, pp.461- 462)

A consequence of this theorem is that when considering a graphical representation on
a real interval of a discontinuous solution of (A) (that is not in the form g(x) = Kx),
given a point of the plan with a rational abscissa a, and an ordinate different of K«
there will be points of the graphical representation in every neighbourhood of this
point. Because of the density of Q in R, on the graphical representation, there will not
be only one point that will appear on the vertical line corresponding to the point of
rational coordinates (a, g(a)) that lies on the line with equation y = Kx.[7] More
precisely the graph of such a totally discontinuous solution is dense in R X R.In
Durand-Guerrier et al. (2019), we analyse a similar phenomenon in the case of the
functional equation for exponential, which we show relevant for a discussion with
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undergraduates on the Q-incompleteness versus the R-completeness, and related issues
with graphical representations. Relying on this experience, we hypothesise that the
Cauchy functional equation (A) would be a good candidate for designing an activity at
the secondary-tertiary transition and in teacher training program aiming at shedding
light on the crucial role of completeness/incompleteness of the standard order on the
numbers sets at the interface between algebra and analysis.

In the next section, we focus on proofs that every monotonic function with domain of
definition R and solution of the Cauchy functional equation (A) is a linear function.

THREE PROOFS THAT EVERY MONOTONIC FUNCTION SOLUTION OF
THE CAUCHY FUNCTIONAL EQUATION (A) IS A LINEAR FUNCTION.

Hewitt and Zuckerman (1969, p.121) underline that a consequence of the theorem
above established by Hamel is that: “If f satisfies (A) [8] and is continuous at some
point, or is bounded above or below on some interval, then f(x) has the form kx.”

It is also the case if f is monotonic (Aczel & Dhombres, 1989, p.15).

Theorem: if a function defined on R satisfies equation (A) and is monotonic on R, then
there exists a real k such that Vx € R f(x) = kx.

We provide below three proofs of the theorem above shedding light on the role of order
in the study of the Cauchy functional equation (A). The first proof relies on the fact
that every real number is the limit of a pair of adjacent rational sequences; the second
and the third ones on the definition of the set of real numbers by Dedekind’s cut
method. The proofs are done in the class of increasing functions from R to R; in the
three proofs, f denotes a function of this class.

Proof 1, with adjacent rational sequences

Given a real number a, u and v two adjacent rational sequences converging to a, with
u an increasing sequence and v a decreasing sequence with u < v, we have:

VneEN, u, €Q A1, EQA u, < a < vnandliognuz liorglv=a
A fis increasing on R, vn € N f(u,) < f(a) < f(v,)(*)
AsvVneNu, € Q v, € Q,then (vn €N f(u,) = u, f(1)) A(f(v,) = v, f(1))
Then we have: Vn € Nu, f(1) < f(a) < v,f(1) (*%)
As u, and v, convergetoa,andVvn € Nu,, < a < v,, we have:
af(1) = f(a) = af(1) (***)
Finally, we conclude that f(a) = a f(1), from which follows:
Vx €ER f(x) = xf(1), 1i.e. f is linear.
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Proofs 2.1 & 2.2, using the Dedekind’ s cuts.

Given a real number «, there is a cut (A, A,) of the set of the rational numbers for
which a is the only real number operating this cut; i.e. « is the supremum of A; and
the infimum of A,.By the definition of A; ,A,eta, VX € A, Vy €Ay, x < a <y (¥)

Proof 2.1.
Given b € A; and c € A, we have b < «a < ¢ (from *); then, as f is increasing:
f®) < f (a) < fe)(x).
As A1 and A2 are subsets of the set of rational numbers, we have:
f) = bf(DAf(c) = ¢f(1)
Then, by substitution in (**), we have bf (1) < f(a) < cf (1) (***)
1* case: f(1) = 0;then f(a) = 0 hence Vx € R, f(x) = 0.

2™ case: f(1) > 0[9]; by dividing by £(1) in *** we have b < ]]:E 3 < ¢ kR

We deduced that Vx € A; Vy € A, x < % < y REEEE
]]:E 3 is operating the cut (44, A,).

Because there is a unique real number operating a cut, we conclude that:

This proves that

% = a, and finally, f (@) = af (1), from which follows: Vx € R f(x) = xf (1), i.e.
f is linear.

Proof 2.2

We first prove that (f(4,), f(A,)) is a cut of f(Q) operated by f(a).

Let us consider e € R**,

As (A1,A;) isacut of Q, there exist x € A; andy € Ay, suchthato <y —x < f(e1)

Let us consider ¢ and d two such elements.

From 0<c—b<m and f(1) >0,weget: 0 <cf(1)—bf(1)<e;

as be€eA, f(b)=bf(1); as c€A, f(c)=cf(1); then we have:
0 < f(c) — f(b) < e. It follows that:

VeeRYIw e f(4,)3z€ f(4,),0<z—w<¢

This proves that: (f(4,), f(A3)) is a cut of f(Q) (¥)
As a is operating the cut (44, 4;), and f is an increasing function, we have:

Vx € AiVy € Ay f(x) = f(a@) = f(¥)
By definition of f(A;) and f(A,), we have: Vw € f(41)VzE€ f(A, ) w < f(a) <z
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This proves that f (a) operates the cut (f(4,), f (A2))(**)
From (*) and (**) we conclude that (f(4,), f(4,)) is a cut of f(Q) operated by f ().
We now prove that af (1) is also operating the cut.

As A; and A, are subsets of the set of rational numbers, we have:

VX €A, VY €Ay f(X) = xf (D AF(Y) = yf(1)

Given d € f(A;), and b € A, such that d = f(b) wehaved = bf(1), and given
h € f(A;) and g € A, suchthath = f(g) we have h = gf (1).

As f(1) >0,and b < a < g, we have bf(1) < af (1) < gf(1).
From which follows: d < af (1) < h and finally:

Vz e f(A))VwE f(4,) z<af(1l) <w.
This last assertion means that af (1) is operating the cut (f(4;), f(4,)) (***)
Thanks to the uniqueness of the real number operating the cut, we conclude that:
f(a) = af (1), from which follows: Vx € R f(x) = xf (1), i.e. f is linear.

In these three proofs that any increasing function solution of the functional equation
(A) is a linear function, the role of order is highlighted. In the second and third proofs,
we refer only to properties related to order, without involving limits of sequences This
is an illustration of the claim by Sinaceur that Dedekind reduced the continuity [of the
set of real numbers] to order.

DIDACTIC IMPLICATION
From the above, there are two main points of interest from our didactic perspective.

The first concerns the important and surprising result that there are totally
discontinuous functions among the solutions of the functional equation (A). In
university courses, when such functions are introduced, it is common for the professor
to give examples that, for the students, seems to be constructed for this purpose, except
for the Dirichlet function, the indicator function of Q in R, whose usefulness can be
easily demonstrated. Such a presentation does not highlight the rationale for
considering totally discontinuous functions, which might appear as pathological
monsters, that should be relegated, as suggested by Lakatos (1976). However, our
experience with the case of the Cauchy functional equation (B) whose continuous
solutions are exponential functions, shows that this provides a rich opportunity to
highlight the role of completeness/incompleteness, and allow graphical proofs to be
questioned, justifying Bolzano and Dedekind’s concerns that geometry-based proofs
are not appropriate when moving on to analysis (Durand-Guerrier, 2022a). Starting
with equation (A), instead of equation (B) could allow the emphasis to be placed on
the topological properties, because the algebraic calculations are easier.

The second 1s that when solving the equation in the class of monotonic functions, the
solutions are necessarily linear. In the French syllabus, this kind of results are seldom
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taken into consideration. This, together with the usual practice of working mostly in
the set of real numbers, leaves in the shadow the role of order and the topological
properties relevant to ordered sets (completeness/incompleteness; connectivity/non-
connectivity; compactness/non-compactness, etc.). This is likely reinforced by the
usual practice in first-year university courses of giving privilege to the following
characterization of the Supremum:

(VxeF,x<M) AN(Ve>03Ix€EF,M—x<c¢)

and the corresponding sequential characterisation, which favour a point of view linked
with limits. Although these characterisations are useful in many cases, for some proofs
it may be more efficient to use the definition of Supremum (resp. Infimum) as the
minimum (resp. maximum), if any, of the upper bounds (resp. lower bounds). In
Durand-Guerrier (2016) we report the case of Master students in a teacher training
program in France working on a fixed-point theorem for an increasing function, who
initially thought the continuity of the function in the interval [0,1] of domain R was a
necessary condition. Once they realised that this was not the case, they looked for a
proof using the sequential characterisation; none of them search for a proof consisting
in considering the supremum of a well-chosen subset as a candidate for a fixed point
and proving that this is the case. This proof is efficient and holds as soon as we are in
a complete lattice (Tarski, 1955). This is not to say that proofs using the sequential
characterisation should be replaced by proof using the definition; rather, we consider
that multiple proofs activities should be proposed and discussed with students at the
secondary-tertiary transition and in teacher training programs as an efficient means of
simultaneously increasing skills in proof and proving, as well as understanding of
concepts. (Durand-Guerrier, 2022b). This is particularly important in the case of order
which, as mentioned above, is a transversal notion at the interface of several areas of
mathematics (e.g. Algebra, Geometry, Analysis, Combinatorics, etc.).

A FORTHCOMING EXPERIMENT WITH CAUCHY EQUATION (A)

The second author of this paper has for years proposed activities based on functional
equations, including the Cauchy equation (A). Naturalistic observations support the
conjecture of their relevance to address some of the issues developed in the previous
sections regarding order. The next step is to design an experiment around the Cauchy
functional equation (A) to test our conjecture. The population we will consider for this
experiment will be made of small groups of volunteer students following a teacher
training program in different contexts (third year university, master’s degree,
preparation to the French Agrégation), leaving for other experiments the suitability for
the secondary-tertiary transition. This choice is based on the hypotheses that working
on the Klein’s second transition for these students moving from university to secondary
education shed light on the transition from secondary to tertiary education (Winslew
& Grenbzk, 2014). The experiment is planned in the spring fall 2024. We will follow
the methodology of didactical engineering (Gonzales-Martin & al. 2014), with an
initial open question as:
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The goal is to solve the functional equation f(x +y) = f(x) + f(x) under various
hypothesis on the domain and the property of the function. You are asked to formulate your
hypotheses and to prove the assertions done under these hypotheses.

Our didactic organisation will comprise two sessions. The first will consist of a period
of individual research followed first by a discussion in small groups and then by a
group discussion. We will collect the questions and the answers produced by students,
both written and oral during this session. The second will be collaborative work in
small groups, starting with a few questions that did not emerge during the first session
to carry out specific work on the concepts of continuity, completeness, and monotony.
We will also conduct interviews with students having participated at the two sessions.

CONCLUSION

In this paper we provide motivations for studying functional equations as a means of
highlighting the role of order in proof and proving at the interface between algebra and
analysis. We show that even the simplest functional equation has unexpected solutions
in the set of real numbers as soon as we look for solutions without assuming continuity
of the functions, whereas the solutions in the set of integers or of rational numbers are
exactly what we expect, i.e. linear functions. We then give three proofs, one using
sequences, the two others using Dedekind’s cuts, that solutions in the class of
monotonic functions are linear. We consider that, from a didactic perspective, this
highlights the relevance of introducing multiple proofs activities at university as a
means of simultaneously developing proof and proving skills and an understanding of
concepts involved. In the case of ordered sets, we consider that this could contribute to
a better appropriation by undergraduate students of the general topological concepts
that they will encounter later, and which are known to be difficult. A forthcoming
experiment aims at testing our hypotheses will be designed in the spring fall 2024.
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1.Our translation from French.

2.0ur translation from French.

3.Our translation from French.

4. We will discuss below what happens if we do not impose to the function to be continuous.

5.0ur translation in English from German: Jede dieser unstetigen Losungen der Functional gleichung ist total unstetig; in
jeder beliebigen Nihe eines jeden Punktes der (x, f) —Ebene liegen Punkte de "Kurve" f = f(x).

6.Since the restriction of the function on the set of rational numbers is in all cases of the form g(x) = Kx, the point of
coordinates (o, g(a)) with o rational are on the straight line with equation y = Kx, whatever the solution continuous or
discontinuous.

7.In the original text, the author refers to this equation by (1). For being homogeneous along the text, we changed (1) in
(A) everywhere.

8. For f an increasing function solution of the Cauchy functional equation (A), f(1) = 0.
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A small intervention: students' self-work sessions in calculus lectures
Mika Gabel and Arielle Leitner
Afeka - Tel Aviv Academic College of Engineering, Tel Aviv, Israel
MikaG@afeka.ac.il, ArielleL @afeka.ac.il

This study describes the effects of a small intervention, performed within the framework
of participatory action research, in first semester calculus at an engineering college.
The project is a collaboration between a pure mathematician and a mathematics
education researcher, to study the effects of students' self-work (SW) on students’
achievements, self-efficacy, learning habits and classroom discussion. In all classes,
students were given quizzes with peer instruction; in some, they were also given 10’
SW sessions. Both changes can be easily incorporated in large, coordinated courses.
Multiple forms of data were collected: quiz results, questionnaires, exam questions,
and reflections. The findings show that in groups with SW students’ engagement, self-
efficacy and achievements on the final exam improved, whereas failure rate lowered.

Keywords: Teaching and learning of analysis and calculus, Teachers’ and students’
practices at university level, Novel approaches to teaching.

BACKGROUND

For over a decade, mathematics educators have advocated departing from lecturer-
centred pedagogies and to "...reform collegiate mathematics teaching in a way that
aligns with... more student-centred approaches™ (Vroom et al, 2022, p. 2). Alternative
approaches, particularly active learning, have been shown to be beneficial (e.g., Crouch
and Mazur, 2001; Freeman et al., 2014). Yet, the traditional lecture remains dominant
in undergraduate mathematics courses (Melhuish et al., 2022; VVroom et al., 2022). The
reluctance to drop traditional lecturing was probed by a few scholars (Dawkins &
Weber, 2023; Pritchard, 2010; Vroom et al., 2022) who claim that mathematicians
believe that lecturing has been satisfactory in many aspects and has many merits (e.g.,
immediate students' feedback, introducing students to disciplinary thinking, slowing
down the pace of "doing mathematics"). However, the lecturers express a sincere desire
for an engaging and active classroom environment (Woods & Weber, 2020).

Most instructors need to consider institutional and curricula constraints, contradictory
departmental contexts, the physical barriers of the classroom, or even concerns about
student evaluations (Vroom et al., 2022). Those teaching a coordinated course also
suffer under the “tyranny of content” (Kensington-Miller et al., 2013), and feel time
pressure to cover the same material as other instructors. Finally, adopting a new
pedagogy requires a considerable investment of time and effort, occasionally requiring
a skill set that research mathematicians do not possess or wish to promote, especially
with no guarantee for improved learning outcomes. Goodchild (2023) suggests
“[mathematicians] want substantive and practical suggestions to address the issues they
experience with students’ learning. They want empirical evidence for the effectiveness
of interventions...”. Accordingly, Dawkins and Weber (2023) suggest alternative
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formats for classroom innovations, e.g., designing small pedagogical modifications to
the lecture format, that consider mathematicians’ beliefs on lecturing and are easier to
apply. They recommend studying the effects of such modifications on cognitive and
affective aspects of students’ learning.

Although there is some scepticism regarding radical reforms (such as IBL or flipped
classroom), active learning is widely acknowledged as beneficial, and most lecturers
believe it increases students’ engagement. Freeman et al. (2014) defines active learning
as anything that “engages students in the process of learning through activities and/or
discussion in class... It emphasises higher-order thinking and often involves group
work” (p. 8413-8414). The meta-analysis performed by Freeman et al. (2014) firmly
supports the claim that active learning practices in STEM education leads to substantial
increase in examination grades and reduces the failure rate.

Students’ engagement is also related to affective aspects such as motivation and self-
efficacy, defined as an individual’s belief in their ability to reach goals (Bandura,
1977). Bandura writes that the best way to build self-efficacy is to engage in
experiences that build mastery of a concept. Students with low self-efficacy can be
motivated to try harder, but this requires extrinsic motivation. Ponton et al. (2001) write
about the importance of self-efficacy in engineering education and suggest providing
students with more “mastery experiences” to increase it. Goodchild (2023) agrees that
“students need to be given problems in which they are likely to experience success and
a sense of personal achievement and growth when the problem is solved” (p. 91).

The study described here concerns a modification in a first semester calculus course.
Both authors are calculus lecturers, who perceived their students as relatively passive
learners and wanted to increase students' engagement and to improve students’ learning
habits, particularly their preparation for the lesson. The paper describes the effect of
using Self-Work in some groups, reports initial findings and their implications.

RATIONALE AND RESEARCH QUESTIONS

This study was conducted in a first semester calculus at an engineering college in Israel.
About 800 students are split into 16 lecture groups. The syllabus is fixed and the final
exam is common, therefore, rigid time and content constraints apply. The authors
taught 5 (of 16) lecture groups and were also the designers and performers of the study.
This context naturally lends itself to ‘participatory action research' (PAR) framework,
as it addresses "close-to-practice research involving teachers and researchers working
together to address problems in practice” (Wright, 2021, p. 160), performing actions
and reflecting on it. PAR recognizes the advantage of combined work of academic
researchers and teacher researchers, who are well acquainted with the classroom
environment; it aims to generate practical knowledge, accounting for teachers’
perspectives, the challenges they face and the opportunities they encounter during their
work. PAR 1is carried out within teachers’ own classrooms and involves critical
reflections over a long period of time. Thus, Wright (2021) claims, findings may be
more relevant and applicable to other classroom situations.
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The authors hypothesised that if students arrived better prepared for the lessons, (e.g.,
by reviewing the previous lesson and practising exercises) it would enable them to
participate more during the lesson and improve their self-efficacy. The authors
designed the pedagogical modification aimed to have a substantial impact on student
experience, while leaving course content intact, and changing the use of class time only
a little. The authors added online quizzes with peer instruction (following Crouch and
Mazur, 2001) to all classes (see below Table 1). In some classes they added self-work
(SW) sessions: a weekly habit of solving an exercise alone, without discussion, for 10
minutes. Hence, the research questions examined in this study are:

1. Did the peer instruction activity affect students' achievements in the course?

2. In what ways does adding self-work affect: (a) students' engagement during the
lesson; (b) students’ communication through written work; (c) students’ self-
efficacy concerning mathematical content; and (d) students’ problem-solving
abilities?

The instructors taught in their usual style, the only difference between the groups was
the weekly SW sessions. This study compares differences between the groups and not
between students’ pre/post course status. The SW questions and implementation were
adapted to the course and studied as they were initiated (fitting the PAR framework).

METHOD

Table 1 presents the 5 groups taught by the lecturers. Students have lecture four hours
per week, and a two-hour recitation section with TAs, who also give homework.

Group Industrial | Comp. Sci. | Bio-Medical | Electrical | Software Total of
252 (258)
~N students | 25 (26) 52 (57) 59 (54) 58 (66) 58 (55) students

With 135(138)

Self -Work With With Without Without | With Without 117 (120)

Table 1 Breakdown of lecture groups, with N at the start and (end) of the semester

Active learning was incorporated in the lectures in two ways. During the semester all
groups were given four capstone problems that students solved through peer
instruction, using an online quiz app called MathMatize: (a) students were asked to
solve the problem on their own and submit their answers anonymously; (b) volunteers
were asked to explain their answers, and (c) students were asked to solve the same
problem again after peer discussion, followed by a class summary. After each quiz, the
students were asked to evaluate their technical and conceptual understanding of the
relevant mathematical material, their ability to solve the problems by themselves and
after group discussion. At the end of the semester, a final review session was given
completely through peer instruction, where students worked for two hours and solved
5 problems (see Online Resource 1 - MathMatize questions).
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Three of the five groups practiced weekly self-work (SW) sessions. Two groups (one
for each lecturer) were control groups (see Table 1). The lecturers wrote questions on
the board, and the students were asked to work on them by themselves for 10 minutes.
Some problems were of a technical nature (e.g., computing a limit) and some were
more conceptual (e.g., deciding if a claim was true). Some questions were based on
previously taught content (thus encouraging students to go over their notes before the
lesson) and some problems were designed to scaffold learning of new material, thus
making students' ability to solve them relevant for their work and understanding of the
current lesson. Often the SW was just to do another standard example that the lecturer
would normally have done anyway (see Online resource 2). At the end of the semester,
a survey was given with the final MathMatize review. Both instructors wrote a weekly
reflection to keep track of their impressions over the semester.

The findings are based on students’ answers in the online quizzes and questionnaires,
students’ grades in the final exam and analysis of answers to questions on the final
exam. The findings are supported by evidence from lecturers’ weekly reflections and
selected students’ quotations from conversations and free responses on the final survey.

Analysis of exam questions

Two final exam questions were chosen for analysis, one concerning the intermediate
value theorem and the other relates to inverse functions. A rubric was developed to
evaluate the quality of student logic and argumentation and the quality of student
written communication. Both aspects were graded on a scale 1-4 (1 - below standard,
4 - exceeds standard). The rubric was used to grade questions experimentally; then it
was discussed and rewritten until both authors scored responses the same way. Then,
each author graded one question for all students who answered it, in order to preserve
grading uniformity. Online Resource 3 presents the two exam questions, the rubric,
and translated examples of student answers together with explanations. To avoid bias,
each author graded a question that she did not grade in the actual exam, and the exam
questions were graded blinded to student identity or lecture group.

Analysis of lecturer reflections

Both lecturers/authors wrote weekly reflections during the course. The SW questions
were documented together with their impact, students' behaviour during the SW
sessions, the lecturer’s perception of classroom dynamics and quality of discussion.
Notable student comments were also recorded, as well as conclusions for future
lessons. At the end of the semester each instructor summarised her own reflection (see
Online Resource 4) and recurring themes in both summaries were analysed.

To counteract the potential bias in lecturers' reflections, the reflections were
summarised independently, and then similar themes were extracted. In addition, other
forms of data were collected from students. However, the author/lecturer duality has
also an advantage since both authors were fully invested in the process, could adapt the
pedagogical change, and troubleshoot challenges to suit the needs of their course. In
fact, this is considered an advantage according to the PAR framework (Wright, 2021).

45



FINDINGS
Peer instruction

Table 2 shows the results of the four online quizzes (sequences, continuity, derivatives,
integrals) and the final review. The first four columns show the results of groups
with/without self-work (SW) in Rounds 1-2, where in round 1 students solved the
problem alone and in round 2 with peers. The final two columns show the percentage
of improvement between the two rounds. The groups with self-work seemed to be
better at answering the questions on average in Round 1 or Round 2. These groups also
had a greater average amount of improvement between the two rounds. It seems that
the groups with self-work benefited more from the peer instruction activity. This trend
Is less noticeable at the beginning of the semester, where the classroom norms and
students’ habits are not yet set. However, later in the semester, the students in the self-
work groups improved faster. This is supported by the rest of the data below.

Percentage of Round 1 Round 2 Improvement
correct
answers With SW | Without SW | With SW | Without SW | With SW | Without SW
Sequences 36.7 30.3 41.3 35.6 45 5.4
Continuity 40 29.3 75.1 60 35 30.7
Derivatives 64.3 65.5 85.7 88 21.3 22.5
Integrals 2.6 0 32.8 21 30.3 21
Final-1 29.2 45.8 73.1 46.2 43.9 0.5
Final-2 26.6 45.5 72.7 54.8 46.2 94

Table 2 Summary of results on MathMatize questions

On each quiz, students were asked if they felt able to answer the problem on their own,
and if class discussion helped. Table 3 presents the percentage of positive answers.

Do Alone Discussion helped
Percentage of positive answers

With SW | Without SW | With SW Without SW
Sequences 32.9 15.1 59.4 58.1
Continuity 29.5 7.1 73.2 35.7
Derivatives 49.3 46.3 57.7 44.4
Integrals 21.7 14.3 64 66.7

Table 3 Student experiences during peer instruction
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The groups with SW felt that they are better at solving problems on their own than the
groups without SW, which reflects higher self-efficacy. The SW groups also reported
that the peer discussion helped them more. Thus, in general, students in the SW groups
felt that the activity was more beneficial to their learning.

Final exam achievements

Table 4 shows the failure rate and average grade on the final exam for all groups. Both
groups earned a similar average, slightly above the average of the groups that had other
lecturers. However, the failure rate for students with SW is lower than without SW and
lower than the other lecture groups.

With SW [ Without | Course Total Other groups
Final Avg 59.8 59.8 58.2 57.5
% Failure 41.6 45.5 45.4 46.2
N 127 111 790 552

Table 4 Achievement in final exam
Finally, Figure 4 shows the grade breakdown for the entire course.
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Figure 4 Grade Breakdown in the Course

The x-axis shows a grade range, and the y-axis shows the percentage that received that
grade. The students without SW (red) follow the course averages (yellow) very closely,
and those of the other course groups (green). The students with SW (blue) have a lower
failure rate, and more students earning a lower passing grade, particularly in the grade
range 70-80. The students with only peer learning (red), differ from the rest of the
course (green) only at the range 60-65, where more students with peer learning barely
passed. This corroborates results of Freeman (2014), that active learning helps students
on the verge of passing.

A Closer Look at Exam Questions

Student’s answers to two questions from the final exam were analysed; two aspects
were evaluated using the assessment rubric (Online Resource 2): quality of logic and
argumentation (L) and quality of written communication (W). Table 5 presents the
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average grades. The students with SW scored better on the inverse problem, and the
opposite on the IVT problem. Since SW seemed to help on one of the problems and
the opposite on the other, no conclusions can be drawn. However, the overall exam
grade was improved by SW (Figure 4). Further analysis of exam problems is needed.

Inverse function IVT

N answered L W | N answered L W
With SW (N=127) 82 (64.6%) 0.8 | 0.8 | 56 (44.1%) 1.8 | 1.7
Without SW (N=111) | 74 (66.7%) 0.6 | 0.7 | 53 (47.7%) 22 |2

Table 5 Average grades in exam (L=Logic & argumentation, W=Written comm.)
Lecturer reflections

Both lecturers reported that initially, they struggled to get students to work during SW
sessions, and that it took several weeks to develop the classroom culture. At the
beginning of the semester, both instructors considered giving SW up because they
weren’t sure if it was worth the use of valuable class time (the sessions lasted longer
than the planned 10 min.), but over the course of the semester the students accepted the
SW as part of the lesson and tried seriously to solve the given questions. By the end,
both lecturers were convinced of the value of SW. The class culture also shifted. In the
fifth week of the semester, for example, one of the lecturers wrote an exercise and just
before starting to solve it students asked whether they should start by themselves. This
would have never come up in a classroom without self-work.

The lecturers themselves went through a process of action research and felt that if they
used SW again, they would be better at choosing the questions, and motivating students
to try SW. This is because they would be able to communicate their confidence in SW
to students and incorporate SW more naturally into the lessons. The lecturers identified
the type of questions that best fit their goals: questions that are good concept review, a
computation similar to ones just presented in the lecture, or examples that preview
something that will be covered in the lesson. Both authors believe that if chosen well,
SW questions can actually save time. Both lecturers found that class discussions were
more focused after using SW, and the students asked deeper questions. More students
came to talk to the lecturers after active learning activities, during the breaks for
example, and students seemed to have a better grasp of the material. However, there
were also students who just sat there and refused to try and waited for the “real” lesson
to start. Finally, both lecturers felt that it gave students feedback regarding their
understanding of the material and gave them insight into what the class was struggling
with.

DISCUSSION AND CONCLUSIONS

First semester calculus courses are usually characterised by the need to teach a large
mass of mathematical content in a relatively short time. This is especially true in
coordinated courses. As a result, time constraints are a major consideration in choosing
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how to teach (pedagogy) and what (content). In this study, two active learning activities
were incorporated in lectures: all five groups used peer instruction with online quizzes
and three of the groups also had weekly self-work sessions. The findings demonstrate
that students thought both activities had positive effects on their learning (Figure 1),
and that the students’ achievements in the final exam were the same or above the total
course average, with lower failure rates (Table 4 and Figure 4).

The positive effects of using peer instruction in STEM courses has been well
documented. Indeed, we support the results of Ponton et al (2001), that providing
students with the mastery experience through online quizzes contributed to higher self-
efficacy overall, a better learning environment and learning experience. The failure rate
and higher grades on the final exam that the students achieved support the literature
about the correlation between higher achievements and self-efficacy, and corroborates
Freeman et al (2014) that active learning lowers the failure rate and increases
achievement. A future research direction is to study if the effects depend on the initial
self-efficacy of students, i.e. there are different effects on students that enter the course
with high self-efficacy and students who enter the course with low self-efficacy.

Regarding the effect of adding self-work (SW) sessions to the lessons, both lecturers
wrote in their weekly reflections that at some point, they debated whether to
discontinue the self-work sessions because of their duration and because the peer
instruction includes a phase of self-work (although the MathMatize quizzes were given
4 times during the semester and the SW sessions were given weekly). However, the
findings demonstrate that continuing with the self-work sessions throughout the
semester had several important positive aspects. The self-work groups benefited more
from the peer instruction activity (Table 2), also they seemed to have more students
earning a lower passing grade instead of failing (Figure 4).

Finally, both lecturers indicated in their reflections that as the semester progressed,
they felt a shift in classroom culture. Interestingly, the improvement in groups with SW
is noticeable when looking at the trend along the semester’s timeline (Table 2). This
can be attributed to the time it takes to establish classroom norms. In the lecturers’
reflections, both lecturers wrote that during the first weeks of the course it was difficult
to get students to work alone and that many students simply waited patiently for the
“real lesson” to begin. Over time, it seemed students became accustomed to SW and
needed less prompting from the lecturers. The lecturers themselves learned how to use
SW more efficiently, in a way that encouraged student participation and demonstrated
the relevance of the SW. The lecturer’s weekly reflections reported SW helped focus
the class and gave the students an outlet to check how well they were following the
course, which made the lecture overall more productive.

In their free response on the final survey students wrote that they felt that the SW
problems helped them figure out how well they understood the material, and to realise
what their strong or weak points were. In addition, both lecturers wrote in their
reflections that during the break time students asked the lecturers whether their
solutions were correct and well written. Thus, SW influenced students’ engagement,
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improved their self-efficacy (Table 3) and influenced students’ work at home (Figure
1). Students with SW scored slightly higher on the final exam (Table 5), and more
achieved a lower passing grade as opposed to a high failing grade without SW (Figure
4). Thus, self-work promoted change in classroom norms and students’ learning.

More research into student writing and exam questions is certainly needed to determine
If SW affects student writing capabilities. This implementation of SW did not provide
feedback for written (home) work throughout the semester. Nevertheless, exam
solutions were examined to check whether SW sessions had some effect on students'
written communication in the final exam. Grading exam solutions written under
pressure may not provide the same complete insight as homework where multiple
drafts can be written to practice communication. Indeed, the findings were inconclusive
and more research into exam scores and student writing is needed.

This paper describes a small pedagogical change that can have a big impact on student
experience, students' learning habits and classroom norms. This type of change can be
easily incorporated even in coordinated courses with a common syllabus and a large
lecture, without requiring instructors to make big changes to their lecture style.
Instructors can apply it in their own class regardless of what other instructors are doing.
It does not require a massive time and energy investment in the creation of learning
materials, and it does not require special means. It is accessible to a wide range of
instructors and students and its effects should be studied further.

Finally, both authors were also the lecturers for the five groups, fulfilling the role of
architect, engineer, and construction worker, metaphorically speaking, through the
entire process (PAR). Although measures were taken to make the research as objective
as possible (see above) accounts of the authors' teaching reflections are biassed to some
degree. On the other hand, both authors were fully acquainted with the instructional
context (e.g., syllabus, student population), thus were able to constantly consider and
adapt the study's design according to the real learning environment within which they
operate. Weber (2012) stated that "mathematicians are unlikely to implement teaching
suggestions if these suggestions are at variance with their pedagogical goals and beliefs
or " (p. 464). Goodchild (2023) writes "if mathematics teaching and learning in higher
education is to change, it is up to mathematics teachers to be the change agents" (p.
74). Continuing this, Dawkins and Weber (2023) propose a model for improving
advanced mathematics instruction, that relies on increased mathematicians'
involvement in designing easily adopted pedagogies that could be simply up-scaled.
This work provides initial evidence for the efficiency of this approach.
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ser?
Ana Garcia-Amado?, Asuman Oktag?, y Diana Villabona!

ICinvestav-IPN, Departamento de Matematica Educativa,
anna.garciamado@cinvestav.mx; oktac@cinvestav.mx;
diana.villabona@cinvestav.mx

De acuerdo con la teoria APOE, cuando un individuo siente la necesidad de ver un
Proceso como una estructura estatica a la que puede aplicar Acciones y, las aplica, se
dice que ha encapsulado ese Proceso en un Objeto. No obstante, la realizacion de una
Accion puede hacerse a través de distintos caminos cognitivos. Este estudio presenta
un disefio, obtenido a partir de un analisis tedrico de la Accion ‘suma grafica de
funciones’. Se plantea que, aungue se trate de la misma Accion, la naturaleza distinta
de las funciones que se suman incide en la forma de actuar y en la complejidad de la
Accion en cada caso. Conocer los requerimientos cognitivos en cada camino es crucial
para determinar la complejidad de una Accion. Este estudio proporciona una
contribucidn tedrica en relacion con la comprension de la estructura Accion en APOE.

Palabras clave: Funcion, Representacion grafica, APOE, Estructura Accion.
APOE: UNA TEORIA QUE EVOLUCIONA

“este libro no puede, ni debe, ser considerado como la ‘Gltima palabra’ sobre la
teoria APOE” (Arnon et al., 2014, p. 4)

Los primeros cimientos de la teoria APOE se construyeron en la década de 1980,
cuando Ed Dubinsky (1935 — 2022), su fundador, se encontré con la nocion de
abstraccion reflexiva de Piaget. Han transcurrido cuatro décadas desde que Dubinsky
y sus colaboradores comenzaron a reflexionar sobre la construccion del conocimiento
en matematicas avanzadas. Aunque esta teoria se ha consolidado con el tiempo, sigue
evolucionando hasta el dia de hoy permitiendo explorar sus constructos a un mayor
grado de especificidad y profundidad. A continuacion, presentamos una breve
descripcion de la teoria APOE y algunos temas recientes de investigacion en los que
se ubica este estudio.

La teoria APOE en la construcciéon de conocimiento matematico

La Teoria APOE es una teoria constructivista que, en términos de un modelo cognitivo,
permite describir aquello que puede construirse en la mente de un individuo mientras
aprende algin concepto matematico. En la teoria APOE, las construcciones
involucradas se consideran etapas que, a su vez, se refieren a las estructuras mentales:
Accion, Proceso, Objeto y Esquema. Para el transito de una estructura a otra se emplean
mecanismos mentales como interiorizacién, encapsulacion, des-encapsulacion,
reversion, coordinacién y tematizacion. A continuacion, se describe cada una de las
estructuras mentales y su interaccidn con algunos de los mecanismos (ver Figura 1).
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Figura 1: Estructuras y mecanismos mentales para la construccion de conocimiento
matematico (adaptada de Arnon et al., 2014, p. 18).

En la Figura 1 se observa que la construccién de la comprension de un concepto
matematico inicia con Acciones sobre Objetos que el individuo previamente ha
construido. Por ejemplo, para un individuo que ha construido el concepto del conjunto
de los numeros reales como Objeto, podemos considerar la Accion de tomar un
elemento de un conjunto y transformarlo de alguna forma para asignarle un dnico
elemento de un segundo conjunto. Lo anterior es una manera de iniciar el camino hacia
la construccion del concepto funcion. Una Accién es externa, cada paso de la
transformacion se hace de manera explicita y sin omitir alguno. Aungue la Accién es
la estructura mas basica, es indispensable para el desarrollo de las demas estructuras.

Un Proceso es una Accion interiorizada, es decir, una estructura mental que realiza la
misma transformacion que la Accidn, pero ahora ejecutada totalmente en la mente del
individuo; de manera consciente, reflexiva y controlada. Lo anterior surge como
producto de la repeticion de la Accion y de su interiorizacion a través de la reflexion
sobre ella. Continuando con el ejemplo de funcién, cuando un individuo repite esa
Accion en diferentes conjuntos, y reflexiona sobre la Accion como una transformacion
dinamica, comienza la interiorizacion de ésta para “ver la funcion como un tipo de
transformacion que empareja elementos de un conjunto, llamado dominio, con
elementos de un segundo conjunto, llamado recorrido” (Arnon et al., 2014, p. 30). Otra
manera de construir Procesos es a traves de los mecanismos reversion y coordinacion.

Una vez que el individuo ha construido un Proceso, el cual tiene una naturaleza
dinamica, puede sentir la necesidad de verlo como una estructura estatica para aplicarle
Acciones (0 Procesos). Lo anterior constituye el comienzo de la encapsulacion del
Proceso en un Objeto mental. Acciones como formar un conjunto de funciones,
operarlas o establecer sus propiedades, motivan la encapsulacion del Proceso funcion
en el Objeto cognitivo funcién. Por otra parte, realizar una Accidn o un Proceso sobre
un Objeto, en algunos casos puede requerir de la des-encapsulacion del Objeto a su
Proceso para examinar sus propiedades (Asiala et al., 1996). Finalmente, la interaccion
entre las estructuras y los mecanismos mentales y, en general, “todo su conocimiento
conectado (explicita o implicitamente) a ese concepto” (Arnon et al., 2014, p. 110)
conduce a Esquemas que tienen una naturaleza dindmica y coherente. Por ejemplo,
para el caso de funcidn, ante una situacion matematica, si el individuo identifica si ésta
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corresponde, 0 no, a una situacién funcional, es un indicio de que su Esquema de
funcion es coherente.

Desde su inicio, la teoria APOE se ha mantenido como un cuerpo tedrico dinamico y
en constante evolucion. Especialmente las descomposiciones genéticas, que consisten
en modelos cognitivos que describen un camino viable por el cual un individuo podria
construir su conocimiento matematico, han evolucionado significativamente a medida
que ha progresado la investigacion. Este avance ha generado otro tipo de reflexion
profunda dentro de la teoria. Por ejemplo, Okta¢ et al. (2021), han examinado con
detalle descubrimientos recientes acerca de los puntos de transicidn, también conocidos
como niveles intermedios entre concepciones. Asimismo, tanto Dubinsky et al. (2013)
como Villabona et al. (2022) han abordado una nueva estructura potencial denominada
Totalidad. En particular, Villabona (2020) ha abierto una reflexién acerca del tipo de
concepcion que podria tener un individuo que realiza algunas Acciones y otras no,
sugiriendo la existencia de Acciones mas complejas en comparacion con otras.

Este estudio tiene como objetivo determinar y clasificar los tipos de Accion que se
pueden realizar en el contexto de funciones. Para ello, es esencial considerar tres
aspectos fundamentales. En primer lugar, la funcidn es un Objeto matematico central
en las matematicas y posibilita la aplicacion de distintos tipos de Acciones con variados
grados de complejidad. En segundo lugar, es crucial explorar Acciones en un contexto
poco convencional para los estudiantes, como lo son las representaciones gréaficas,
dado que en general la ensefianza suele priorizar lo algebraico. Una de estas Acciones
es la suma gréafica de funciones, donde la naturaleza de las funciones que se suman
puede complejizar la Accion como se ejemplificara mas adelante. En tercer lugar, es
necesario examinar la manera en que los individuos aplican estas Acciones. Como
sefiala Mamolo (2014), mas alla de la capacidad de actuar sobre un Objeto, resulta
crucial comprender como se lleva a cabo dicha Accion sobre ese Objeto asi como la
naturaleza de la actividad matematica y estrategias de solucion que emergen de los
estudiantes (Proulx, 2015). Por lo anterior, elegimos el concepto de funcion que, debido
a su importancia en la ensefianza de las matematicas, ha sido ampliamente estudiado
en la investigacion en Matematica Educativa, como se expone a continuacion.

EL CONCEPTO FUNCION Y SU REPRESENTACION GRAFICA

Desde una perspectiva cognitiva, el concepto funcion se ha considerado como
fundamental y complejo. Varios estudios han identificado concepciones erroneas y
obstaculos en su proceso de aprendizaje (Leinhardt et al., 1990). Asimismo, existen
estudios que se han enfocado en la instruccion y en el disefio de actividades para
abordar estas dificultades (Paoletti y Moore, 2018). Otros enfoques han explorado la
funcion desde una perspectiva epistemoldgica (Sierpinska, 1992), mientras que
algunos han analizado su transicion entre diferentes niveles educativos (Artigue, 2008).

Desde la teoria APOE, los estudios sobre la comprension de este concepto han tenido
una naturaleza tanto tedrica (Dubinsky, 1991) como empirica (Dubinsky y Wilson,
2013). Breidenbach et al. (1992) sefialan que para que un estudiante manifieste una

54



comprension del concepto de funcion, este deberia mostrar evidencias de una
concepcién Proceso, sin embargo, muchos universitarios apenas alcanzan una
concepcion Accion. Otros estudios declaran que, como requisito previo para la
comprension de otros dominios, un individuo deberia tener un Esquema de funcion
(Martinez-Planell y Trigueros, 2019) ya sea que se requiera a la funcién como Objeto
0 como Proceso.

Aunque el concepto de funcién ha sido ampliamente estudiado desde la matematica
educativa, se ha buscado analizar su comprensién en términos de la teoria APOE, ya
que nuevos cuestionamientos nos estan llevando a otro tipo de estudios con el fin de
mirar algunos fendmenos desde distintas perspectivas. Es notable e interesante
observar como estos enfoques novedosos pueden integrarse y explicarse dentro de los
mismos constructos que conforman la teoria APOE, evidenciando su versatilidad y
aplicabilidad. Este estudio hace parte de esos nuevos planteamientos, pues, aunque la
estructura Accion es fundamental para iniciar la construccion de conocimiento, no
hemos encontrado estudios que pongan su foco de atencidn en esta estructura y, en
particular, en una representacion grafica.

Por otro lado, una dificultad persistente a lo largo de la historia ha sido la necesidad de
asociar una expresion algebraica a la representacion grafica. Como sefiala Sierpinska
(1992), las primeras definiciones del concepto de funcion se centraban en una
expresion algebraica, lo que llevo a matematicos reconocidos a considerar que, si una
grafica no podia ser representada algebraicamente, no correspondia a una funcion.
Asimismo, Leinhardt et al. (1990) evidenciaron que, a pesar de conocer la definicién
de funcidn, algunos estudiantes no logran determinar si una grafica es representativa
de una funcidn. En nuestro estudio, consideramos la representacion grafica interesante
por varias razones. En primer lugar, como ya se ha mencionado, la representacion
grafica ha sido menos favorecida que la algebraica cuando se trata de ensefiar
funciones. De ahi que las situaciones en un ambiente grafico resulten inusuales para
los estudiantes. En segundo lugar, las situaciones en un ambiente grafico permiten
evidenciar mayor conciencia en los estudiantes sobre las propiedades y las operaciones
entre funciones, a diferencia de si se realizaran solo de manera algebraica mediante
algoritmos que podrian estar memorizados.

ELEMENTOS METODOLOGICOS E INSTRUMENTO DE INVESTIGACION

La teoria APOE propone un ciclo metodoldgico de investigacion que comprende las
siguientes componentes: Analisis tedrico, Disefio e Implementacion de la Ensefianza y
Recoleccion y Anélisis de Datos. Lo que se muestra en este documento es el producto
de un analisis teorico, en particular se presenta el disefio y anélisis de una situacion que
involucra la Accion ‘suma grafica de funciones’. Nuestro anélisis tedrico toma en
consideracion estudios previos de la ensefianza y el aprendizaje del concepto, apoyados
0 no en APOE; estudios epistemoldgicos del concepto; abordaje de la nocion de
funcion en algunos libros de texto y nuestra experiencia en su ensefianza y aprendizaje.
A partir del analisis tedrico, hemos disefiado un instrumento con un enfoque en la suma
gréfica de funciones. Como enfatiza Oktac (2019), el disefio (de problemas,
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situaciones, cuestionarios, entrevistas) es fundamental en la teoria APOE, pues a traves
de ellos obtenemos informacion sobre los mecanismos y las estructuras mentales que
desarrolla un individuo mientras construye su comprension de un concepto matematico
0 le da solucion a una situacion matematica.

La situacion que hemos disefiado y que a continuacion se presenta permite, con la
misma Accion suma grafica de dos funciones, analizar cdmo esta se hace mas compleja
cuando una de las funciones varia un poco. Es decir, dentro de la misma Accion,
estamos observando que la naturaleza de la funcion, que esta determinada por las
propiedades asociadas al Proceso de funcion, incide al momento de llevar a cabo la
Accion.

Explorando la complejidad en la suma grafica de funciones

Una de las situaciones (Situacion 1) que se propone es la que se muestra en la Figura
2 que contiene, a su vez, dos situaciones: suma entre funciones constantes (a la
izquierda del eje vertical) y suma entre una funcion constante y una lineal no constante
(a la derecha del eje vertical). La manera en que esta disefiada esta situacion resulta del
analisis tedrico, en donde se ha pensado que, aungue se trate de la misma Accion,
alguien que vea esta situacion como dos situaciones independientes, podria actuar de
una manera, cuando las funciones tienen la misma naturaleza (como en el caso de las
constantes) y de otra en caso contrario.
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Figura 2: Situacion 1y su solucion.

Este estudio infiere que la complejidad para llevar a cabo una Accion puede ser
determinada en dos sentidos. Por un lado, estd influenciada por la cantidad de
elementos necesarios del Esquema asociado al Objeto y la forma en que estos
interactdan. Por ejemplo, una Accion puede requerir la des-encapsulacion de los
Objetos, ya sea para examinar las propiedades y caracteristicas asociadas a sus
Procesos, 0 para la posterior coordinacion de estos. Por el otro lado, esta influenciada
por la interaccién del individuo con el Objeto a traves de su Esquema asociado y su
nivel de desarrollo. Esta interaccion define un camino, y la concepcion que el individuo
tenga sobre las funciones dadas juega un papel crucial al momento de realizar la
Accion. De esta manera, la Accidn puede volverse tan compleja para el individuo como
esa interaccion.

Para ejemplificar lo anterior, a continuacion, se describen algunos caminos, derivados
de nuestro analisis tedrico, que podrian seguirse al momento de abordar la situacion

56



presentada en la Figura 2. Entendemos por camino cognitivo una descripciéon que
incluye los elementos cognitivos en términos de estructuras y mecanismos para llevar
a cabo la Accion. Estos caminos pueden diferir en cada individuo de acuerdo con su
Esquema de funcion.

DOS POSIBLES CAMINOS PARA LA SUMA GRAFICA DE FUNCIONES

Con el fin de profundizar en la comprension de la descripcion de los caminos que aca
se presentan, a continuacion, se procede a esclarecer parte de la terminologia utilizada
y a plantear algunas distinciones.

Terminologia y distinciones

Concepcion Proceso de funcion: Una concepcion Proceso de funcién implica la
comprension de funcién como “un tipo de transformacion que empareja elementos de
un conjunto, llamado dominio, con elementos de un segundo conjunto, llamado
recorrido” (Arnon et al., 2014, p. 30). La expresion “tipo de transformacion” infiere
que la concepcion Proceso de funcion es independiente de la representacion, es decir,
es general. Sin embargo, las Acciones que indican la transformacion en cada
representacion cambian y, en consecuencia, también los Procesos. Encontrar el valor
de una funcidn en una representacién algebraica difiere de una representacion gréafica,
no obstante, es posible establecer equivalencias de esta transformacion, como se
explica a continuacion para el caso de la representacion grafica.

Concepcion Proceso de funcion en una representacion grafica: Arnon et al. (2014)
sefialan que una de las dificultades en los estudiantes para transitar de una
representacion a otra, es que hay una carencia del “significado cognitivo del concepto
(planteado por la descomposicion genética)” (p. 181). Para el concepto funcion, el
significado cognitivo se asocia a la idea general de transformacion; al respecto,
Dubinsky (1991) sefiala que “puede ser posible que el sujeto coordine el Proceso de
funcion y su grafico” (p. 115). Lo anterior sucede, cuando el estudiante entiende que,
para un valor en el eje horizontal, la altura del grafico corresponde al valor de la
funcion. Asi, la coordinacion se da a través de la equivalencia entre el valor de f para
un valor particular, con los elementos visuales que proporciona la grafica para ese valor
(signo y distancia al eje horizontal). Si bien es posible pensar que la comprensién del
concepto funcion implica una concepcion Proceso y que este hecho se puede interpretar
en diferentes representaciones, las propiedades asociadas a dicho Proceso pueden ser
diferentes dependiendo del tipo de funcién como se ejemplifica a continuacion.

Funcion constante y funcion lineal: Para examinar las propiedades asociadas al
Proceso de funcion cuando ésta es constante y estd representada graficamente, un
individuo puede pensar y reflexionar sobre como es que se esta dando la
transformacion y determinar que, para cualquier valor sobre el eje horizontal, la
distancia a la grafica, y el signo, son siempre los mismos. En términos de variacion, la
altura al grafico no varia, independientemente si se varia el valor en el eje horizontal.
De manera similar para el caso de la funcién lineal no constante, por cada unidad que
se varie en el eje horizontal, la variacién en la altura es siempre la misma.
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Con lo anterior, en este documento expresiones como “concepcion Proceso de funcion
constante”, no significa que existen diferentes concepciones Proceso de funcion, sino
que las propiedades asociadas al Proceso difieren de acuerdo con el tipo de funcién.
También cuando se haga alusion a un tipo de concepcion, nos estamos refiriendo, en
particular, a concepciones asociadas a un dominio grafico. A continuacion, se
describen dos caminos, junto con sus requerimientos cognitivos, que pueden pensarse
en ambos casos (ver Figura 2), si las dos funciones son constantes o, si una es constante
y la otra lineal. Una sintesis de estos caminos se muestra en la Figura 3.

Camino 1: Infiriendo propiedades de la funcion resultante a partir de las
propiedades de las funciones dadas

En este camino el individuo reconoce que las funciones dadas son rectas y que esta
propiedad la heredara la funcion resultante. Ademas también reconoce, de qué tipo sera
la funcion resultante, es decir, constante (recta horizontal) o lineal (recta inclinada). Lo
anterior hace referencia a la forma de la funcion, lo cual requiere de propiedades del
Objeto y, por tanto, de una concepcion Objeto de funcidn. Una vez que el individuo ha
reconocido la forma que tendra la funcion suma a partir de las propiedades de las
funciones dadas, el siguiente paso tiene que ver con su ubicacién. Para que el individuo
acierte en la ubicacion de la funcion resultante, éste debe reflexionar sobre las
propiedades asociadas al Proceso de funcion, tanto en f como en g, ya sea para
determinar un punto (para el caso donde ambas son constantes) o dos puntos (en
cualquier caso) por donde pasara la recta. Esto altimo requiere de la des-encapsulacion
de cada una de las funciones a su Proceso para llevar a cabo una Accién sobre un valor
x (0 dos cuando se requieran dos puntos) en el eje horizontal. Para sumarlas
graficamente en ese punto (o puntos), el individuo debera tener en cuenta elementos
visuales informados por las mismas graficas de f y g. De esta manera, la des-
encapsulacion se hace con la intencion de realizar la siguiente Accion: Examinar
propiedades y caracteristicas del Proceso funcion en términos de distancias y signos
para un valor (o valores) en el dominio de la funcion suma. Esta Accion
inmediatamente se generaliza sobre todo el dominio de la funcion resultante para trazar
una recta, ya sea horizontal o inclinada. La generalizacion es posible gracias a que, de
antemano, el individuo sabe qué forma tendréa la funcién resultante.

En sintesis, el camino anteriormente descrito requiere, en primer lugar, de una
concepcion Objeto de funcion para determinar la forma de la funcion resultante y; en
segundo lugar, para su ubicacion, se requiere de la des-encapsulacion de cada uno de
los Objetos fy g a su Proceso para comparar distancias y signos en un valor (o
valores) sobre el eje horizontal; esto Gltimo es una Accidn que inmediatamente se
generaliza para trazar la funcion resultante.

Camino 2: Como una traslacion

Este camino se enfatiza en que una de las funciones, por ejemplo f, al ser constante
trasladara verticalmente a la otra, g. Es decir, en este camino el individuo identifica
inmediatamente el efecto grafico que tiene sumarle una funcién constante, ya sea que
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ésta esté por encima o por debajo del eje horizontal, a cualquier funcién. Lo anterior
requiere de una concepcion Objeto de funcion para aceptar que es posible sumarlas y,
para reconocer que sumarle una constante a otra funcion no cambiara la forma de la no
constante. Sin embargo, analizar de qué manera trasladara f a g, es decir, la ubicacion
de la resultante, requerira del mecanismo de des-encapsulacion para examinar las
propiedades y caracteristicas, pero solo de f pues, en este camino, el estatus de g es de
Objeto, es decir, “algo” que se va a tomar y a mover segun lo indique f. Asi, la des-
encapsulacion de f se hace con el fin de reconocer su signo y su distancia al eje
horizontal; en primer lugar, para saber en qué sentido desplazar a g, hacia arriba si fes
positiva 0 hacia abajo si f es negativa y; en segundo lugar, para determinar cuanto la
trasladara, lo cual se abstrae de su distancia al eje horizontal.

Como se observa, en este camino, al igual que en el camino 1, dos aspectos son
importantes: Reconocer la forma de la funcion resultante y, su ubicacion. Para lo
primero, se requiere de una concepcion Objeto de las funciones dadas y; para lo
segundo, de la des-encapsulacion de f a su Proceso. También en todo momento g
conserva su estatus de Objeto pues, es sobre la totalidad del Proceso de g que el
Proceso de f esta actuando.

Si se comparan los dos caminos anteriormente descritos para la suma gréafica entre dos
funciones, el camino 2 muestra el camino con menos requerimientos cognitivos pues,
al igual que en el camino 1, se requiere de una concepcion Objeto de funcidn, pero, a
diferencia, solo se requiere de la des-encapsulacion de una de las funciones dadas,
como se resume en la Figura 3.
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Figura 3: Caminos cognitivos para la suma gréafica de las funciones fy g.
IMPLICACIONES TEORICAS Y DIDACTICAS

Si bien APOE es una teoria consolidada, todavia estd en constante evolucion.
Investigadores que se enmarcan en esta teoria continGan revisandola, y estudios
recientes muestran la necesidad de incorporar nuevos constructos o profundizar en los
existentes. Aunque la estructura Accion ha estado presente desde los inicios de la teoria
APOE, vy es la base para el desarrollo de otras estructuras, estudios como Mamolo
(2014) y Villabona (2020) han planteado una serie de cuestionamientos nuevos sobre
la forma de actuar y las Acciones. Este estudio pretende aportar en esa direccion.
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Analizar qué significa que se pueda realizar una Accién y otra no y; explicar en
términos cognitivos desde la teoria APOE, por qué algunas Acciones, o formas de
actuar, son mas complejas que otras, permitira esclarecer sobre lo que significa tener
una concepcion Objeto de un concepto o, explicar qué tipo de concepcion tiene un
individuo cuando puede realizar algunas Acciones y otras no.

Lo que se ha mostrado en este documento hace parte de un analisis tedrico. Este analisis
se relaciona con el planteamiento de que, la Accidn puede hacerse tan compleja
dependiendo de la interaccién que el individuo tenga con el Objeto a través de los
elementos de su Esquema. Para explorar tal interaccion, cabe resaltar la importancia
del disefio de las situaciones matematicas como la que se mostro en este documento.
Esta situacion, ademas de ser inusual, permite la posibilidad de tomar diferentes
caminos cognitivos, contrario a si se presentara en una representacion algebraica, por
ejemplo. Respecto a qué llevaria a un estudiante a seguir el camino 1 o el 2, o tal vez
algun otro, planteamos que se relaciona con el nivel de desarrollo de su Esquema de
funcidn. Un estudiante con un Esquema coherente de funcion, puede estar inclinado a
tomar el camino con menos demanda cognitiva, el 2. Independientemente de cual
camino tome, situaciones como la que se mostrd, y el disefio de entrevistas didacticas,
nos daran informacion sobre la manera en que los elementos del Esquema estan
interactuando y como esta interaccion, supeditada por la forma de actuar del individuo
sobre el Objeto, determina la complejidad de llevar a cabo una Accién.

Debido a la relacién intrinseca que hay entre la teoria APOE y la ensefianza-
aprendizaje, profundizar teéricamente en la construccién de un concepto naturalmente
tiene implicaciones didacticas. La forma en que un individuo puede actuar sobre
diversos objetos matematicos influye en la interiorizacion de esas Acciones. El
conocimiento de las diversas Acciones que se pueden aplicar sobre un mismo Objeto
ayuda en el disefio de actividades para motivar su interiorizacion y por ende la
construccion de una concepcion Proceso. En particular, el ambito grafico proporciona
un espacio adecuado donde se pueden introducir nuevas acciones que son novedosas
para los estudiantes.
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The Baire category theorem implies that the set of continuous functions that are
differentiable in at least one point is meager in the space of all continuous functions.
In this sense, the “typical” continuous function is nowhere differentiable. Drawing on
the notion of “horizon content knowledge”, we discuss this observation in the context
of the didactic principle of “functional thinking”, which is important for the teaching
of functions in German schools. We examine potential components of this horizon
content knowledge by illustrating the application of the Baire category theorem to
prove that “typical” continuous functions are nowhere differentiable with a sequence
of tasks that may be implemented in a first-year course on real analysis.

Keywords: Teaching and learning of specific topics in university mathematics,
Teaching and learning of analysis and calculus, Baire category theorem, functional
thinking, horizon content knowledge.

INTRODUCTION

This is a discussion paper and epistemological in nature. We investigate a case of
mathematical horizon content knowledge (Loewenberg Ball & Bass, 2008; Jakobsen et
al., 2013) for prospective mathematics teachers (PMTs), which may be included in
their education at university in the context of real analysis. Based on the observation
that PMTs learn that a “typical” real number is irrational because R \ Q is uncountable
while Q is countable, we raise the question of how to address a similar phenomenon
for the case of functions. In this context, an application of the Baire category theorem
shows that a “typical” continuous function is nowhere differentiable, contrasting
significantly with the sets of functions usually dealt with in school. Here, the reason is
that the set of functions that are differentiable in at least one point is meager in the set
of all continuous functions. In both cases, numbers and functions, it is the mathematical
discourse at the university level that clarifies the scope of the definitions or
characterizations of the mathematical objects given in school, but in only one case is it
usually made explicit in PMT education.

In this paper, we therefore raise the question how prospective mathematics teachers’
horizon content knowledge about typical functions can be enhanced by answering
which continuous functions are typical from a mathematical point of view. One of the
challenges here is that the Baire category theorem is usually presented in the context
of abstract or functional analysis, and is therefore not necessarily part of the curricula
of prospective mathematics teachers at university. Thus, we outline a potential
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inclusion of this application of the Baire category in a course on real analysis to
strengthen PMTs’ horizon content knowledge about functions. In doing so, we aim to
initiate a discussion about the inclusion of this theorem into PMT education by
outlining its relevance in terms of the didactic paradigm “functional thinking” (Kriiger,
2019), which is a vital component in the didactical discussion about teaching functions
at school. In this regard, our investigations are embedded into the discussion about
“Im]aking university mathematics matter for secondary teacher preparation”
(Wasserman et al., 2023). We have a German context in mind, but since the issues
raised here are predominantly epistemological, we believe they translate to other
contexts as well.

PROBLEMATIQUE

Determining what a “typical” instance of a particular class of mathematical objects
looks like requires not only specifying how “typicality” is characterized, but also
checking the scope of a definition and determining what zoo of objects actually falls
under the definition. Pupils and prospective mathematics teachers experience this need
for instance in the context of real numbers. They learn that the set of irrational numbers
IS an uncountable subset of R and that the set of rational numbers is countable. From
this point of view, elements from R\ Q may be described as “typical”. A similar
situation arises in the context of functions: Here, the set of continuous real-valued
functions on an interval is a metric space (with the supremum metric), and the notion
of comeager set can be used to characterize “typicality” in metric spaces. In this sense,
it can be proven with the Baire category theorem that a nowhere differentiable function
is a “typical” continuous function. [1]

Based on the premise that prospective teachers should know about “typical” real
numbers, we argue that they should not only be aware of the consequences of the
definition of real numbers for the real numbers themselves, but that the consequences
of the general definition of real-valued functions should also be part of PMTs’
mathematical horizon content knowledge.

Mathematical horizon content knowledge

Different facets of (prospective) teacher knowledge have been conceptualized during
the last decades, probably originating with Shulman’s (1986) seminal distinction of
content, pedagogical, and pedagogical content knowledge. Loewenberg Ball and Bass
(2009) have added a facet to this discussion called horizon content knowledge in their
framework of mathematical knowledge for teaching. It is “an awareness — more as an
experienced and appreciative tourist than as a tour guide — of the large mathematical
landscape in which the present experience and instruction is situated”, and it shall
contain amongst others “a sense of the mathematical environment” of what is currently
taught or “[m]ajor disciplinary ideas and structures” (Loewenberg Ball & Bass, 2009,
p. 6). Horizon content knowledge is useful to grasp mathematically what pupils say, to
“anticipat[e] and mak[e] connections”, and to “catch[] mathematical distortions or
possible precursors to later mathematical confusion or misrepresentation”
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(Loewenberg Ball & Bass, p. 6). Jakobsen et al. (2013, p. 3128) argued further that
horizon content knowledge is “an orientation to and familiarity with the discipline [...]
that contribute to the teaching of the school subject at hand, providing teachers with a
sense for how the content being taught is situated in and connected to the broader
disciplinary territory”. In this sense, horizon content knowledge is not directly part of
school relevant specialized content knowledge (Loewenberg Ball & Bass, 2009), which
would be “immediately about the content being taught” (Jakobsen et al., 2013, p. 3128).

Admittedly, it is somewhat vague what constitutes mathematical horizon content
knowledge for a school subject. In the case of functions for the upper secondary level,
we would like to indicate what it may include.

Teaching real numbers in school and at university

Our investigation is embedded into the teaching and learning of real numbers and
functions in (upper-level secondary) school and connects to the intricacies related to
the set of real numbers (e.g., Barquero & Winslgw, 2022; Durand-Guerrier, 2016;
Wasserman et al., 2022). In Germany, real numbers are often introduced in grade 10
or 11 (out of usually 13) as an extension of the set of rational numbers to formally
enable the solution to equations like x? = 2, which are unsolvable over the rational
numbers. In this context, prospective teachers (and pupils) discuss proofs by
contradiction that there is no rational number whose square is equal to 2. While such
epistemological issues are covered in school mathematics, students also work with
in geometry, too, without worrying much about the existence of irrational numbers.

Passing to a graphical representation of the graph of the function x —» x? — 2, which
looks like a gapless curved line, the question of the existence of a root is almost blurred,
as it is “obvious” that one must exist. Indeed, this is a consequence of the intermediate
value theorem, which in turn fails over subsets of Q instead of R. One may thus argue
that to make this theorem “provable” a characterization of the set of real numbers is
necessary. In upper secondary schools, pupils work extensively with real-valued
functions defined on subsets of R and with irrational numbers such as e. In this respect,
it seems rather uncontroversial that PMT are taught an axiomatic approach to R in their
courses on real analysis at university. Similarly, real functions are defined, and thus the
question of what a “typical” real function looks like is within the reach of pupils. As
we have mentioned above, the scope of the concepts used and defined in school is
discussed in PMT education in the context of numbers but not yet for the case of
functions.

Functional thinking in mathematics teaching at school

In the last two or three years of upper-level secondary schools, real functions (i.e., those
from intervals to R) are intensively discussed, in particular in the context of
differentiability, integration, and mathematical modeling, and a general definition of
functions may be addressed, too. In this context, “elementary” functions (polynomial,
rational, exponential, and trigonometric functions, their inverses, and finite
combinations) comprise the main class of functions considered in school. This is, of

64



course, for a good reason and fits into the didactic concept of functional thinking, which
Is an important guiding idea in current German mathematics education. It is based on
ideas by Felix Klein (see Krlger, 2021) and has been intensively discussed for at least
forty years (e.g., Greefrath et al., 2016; Roth & Lichti, 2021; Vollrath, 1989). It is
characterized as “a way of thinking, which is typical for handling functions” (Vollrath,
1989, p. 6; own transl.) and emphasizes the use of representations as well as the shifts
between them (e.g., symbolic form of a function term, graphs, and tables). Drawing
graphs of functions is one particular vital point. Functional thinking also aims for
teachers to support their pupils develop appropriate conceptions by considering three
so-called basic ideas (“Grundvorstellungen”) of functions (vom Hofe & Blum, 2016).
For instance, Roth and Lichti (2021, p. 4, own transl.) argue that

[...] one can only deal with a mathematical concept, such as that of a function, using
suitable representations. Even the development of basic ideas about functions themselves
can only succeed by means of their representations and their interconnection, that is, the
change between such representations.

Here, the first basic idea function as a mapping emphasizes that each point in a domain
Is assigned a unique point in a codomain, the second function as covariation underlines
that, given a functional relationship y = f(x), changes in x specify how y changes,
and the third function as an object stresses that a function is an object itself and
operations may be performed on it (e.g., deriving it) (Greefrath et al., 2016).

While functional thinking sensitizes teachers for a large variety of ways to deal with
functions in school, its discussion in mathematics education literature does almost not
emphasize the aspect of functions we consider here, namely the question what a
“typical” function is from a mathematical point of view and that most functions
appearing in school are far away from this (e.g., Barzel et al., 2021; but see Tietze et
al., 2000). We would like to emphasize at this point that we do not see this as a
shortcoming, since the functions from school are already very rich and useful in terms
of functional thinking. For example, elementary functions are very fruitful for
modeling and are rich enough to address structural properties (e.g., linearity,
functional, or differential equations) as well. However, understanding the typicality of
functions may indeed belong to the basic idea of function as an object in school and
university.

Nevertheless, a few instances of “pathological” functions (which do not fall into the
classes described above) are in fact encountered in school, such as piecewise defined
functions with “jumps” or “kinks”, cumulative distribution functions like x —
x exp(—t?)

=

rational and x — 0 if x is irrational as an example for a non-integrable function. In the
context of real and functional analysis in the 19" and 20™ century, the very functions
initially deemed pathologies (in a sense going beyond those listed above for the context
of school) have actually led to significant theoretical foundations and developments.
Tietze et al. (2000, p. 186, own transl., emph. orig.) describe this situation as follows:

dt without an “elementary” term, or the Dirichlet function x — 1 if x is

65



So-called ‘pathological functions’ force a foundation of the fundamentals, and
consequently, we finally obtain the set-theoretical concept of function. As is usually the
case with new findings, this concept of function is initially only partially or almost not at
all accepted outside the areas of mathematical basic research. The breakthrough of the set-
theoretical concept of function came only with Bourbaki, and even this was not the last
stage in the development and exactification process of an evolving mathematics. [...]

Therefore, including the questions of which and “how many” functions are ignored
when only dealing with elementary functions, as well as which are “typical” and in
what sense, is relevant in mathematics teacher education not only from a scientific
point of view, but also in terms of functional thinking. Furthermore, it is not difficult
to imagine that pupils may actually ask whether there are “other” functions besides
those they encounter in class (a similar issue plays a role in the contextualization of
examples and theorems in real analysis courses at university, see Discussion).

In view of the pathological functions in both school and university mathematical
discourses as well as the foundations of real analysis in the sense of the axiomatization
of real numbers and their consequences, applications of the Baire category theorem
seem to us to be relevant to belong to PMTs’ horizon content knowledge about
functions as it is embedded in the teaching contexts that (future) teachers are
confronted with.

THE BAIRE CATEGORY THEOREM

The following definitions are standard and either included in a two-semester course on
real analysis in Germany (Analysis | and II) or are immediate generalizations of the
notions of distance |x — y| for x, y € R as well as open and closed subsets of R. Hence,
the following definitions are accessible to students enrolled in such a course. Let (X, d)
denote a metric space.

e (X,d) is called complete if every Cauchy sequence is convergent in it. For
instance, R with the standard metric is complete. The open ball of radius » > 0
around x € X is B(x,r) == {y € X : d(x,y) < r}and the corresponding closed
ball is B(x,7) == {y € X : d(x,y) < r}.

e Let C[a; b] denote the set of continuous functions [a; b] —» R and d.(f, g) =
If — gllo == sup |f(x)— g(x)|the supremum metric. Then, (C[a; b],d;) is

x€[a;b]
complete. In this metric space, the ball B(f,r) ={g € Cla; b] : |If — glle <
r} contains all functions whose graph lie in the r-strip around the graph of f.

The following definitions characterize “smallness” of subsets and “typical” elements
of a metric space. Let A € X.

e The closure A of a subset A of a metric space (X, d) is the union of 4 and all its
accumulation points in X (i.e., A = N¢oa, ¢ closedin x C)- The interior A is the
set of all points a € A for which there is an open ball centered at a and
completely contained in A (i.e., A" = Uoca, 0 openinx 0).
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e Aisdense (in X) if A = X; A is nowhere dense if (4)" = @ (i.e., (A)€ is dense);
A ismeager if it is the countable union of nowhere dense sets; and A is comeager
If its complement is meager. Elements of comeager sets are called typical.

The intuition is that a nowhere dense set may be considered as very thin, since its points
do not accumulate, and meager sets are merely countable unions of nowhere dense sets.
For instance, Q is a meager subset of R since it is the countable union of singletons. In
the following, we derive an analog statement for (C[a; b], d,).

The Baire category theorem is as follows (Bridges, 1998, p. 297):

Let (X, d) be a complete metric space and D, k € N, a countable collection of open dense
subsets of X. Then, D := Ny Dy 1S dense. By passing to complements, this implies that
X cannot be the countable union of closed nowhere dense sets.

We also recall the Stone-Weierstral’ theorem (Bridges, 1998, p. 216):

The set P[a; b] of polynomial functions is a dense subset of (C[a; b], d,). That is, for each
f € Cla; b] and € > 0, there is a polynomial p € P[a; b] such that ||f — pll. < €.

In words, this means that the e-strip around the graph of f is thick enough such that
the graph of p fits in there.

These theorems, and thus the application to the comeagerness of the set of nowhere
differentiable functions, for which we construct a sequence of tasks below, can thus be
presented in a German course on Analysis | and Il. Depending on the course, these
theorems may be proven or not. The point we try to make is that these theorems and
the following application are in reach of such a course, even if the proofs are omitted.

Proving the Baire category theorem in the context of a course on real analysis

The Baire category theorem may be proven by mimicking the construction of nested
intervals, which has likely appeared in a lecture on real analysis (e.g., for a proof of the
intermediate value theorem): It must be shown that for each x, € X and &, > 0 the set
D n B(x,, &) is non-empty. Since D, is open and dense, there is a ball of radius 1 >
g > 0 centered around some x; € X such that B(xy, &) S D; N B(xy,&). By
openness and density of the D,, k € N, we may proceed inductively and find x;, € X
and 0 < g, <1/k such that B(xy, &) S Dy N B(xp_q1,&x—1) for k >1. Then,
(x,)ken 1S a Cauchy sequence, thus convergent to some x the complex space X, which
satisfies x € B(x,, &) and x € D, for k > 1. (Bridges, 1998, pp. 279-280)

Sequence of tasks about continuous nowhere differentiable functions

In the following, we illustrate a sequence of tasks based on the Baire category theorem
that might be used in a course on real analysis to prove the following theorem:

The set D :={f € Cla;b] : f is differentiable in at least one point} is meager in
(Cla; b], dy). In particular, there are continuous nowhere differentiable functions on [a; b].

The existence of a continuous nowhere differentiable function can of course bhe
illustrated with the WeierstraR functions of the form x — Y5, a* cos(b*x) for 0 <
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a < 1and an odd integer b > a~1(1 + 31/2) and other examples, too (Bridges, 1998,
p. 54). Applying the Baire category theorem, however, leads to the much stronger result
and answers the initial question we posed about how many differentiable functions are
in the space of continuous functions in terms of “meagerness”. From a didactic point
of view, this theorem also raises the question of how to adequately represent a “typical”
continuous function, given that it is impossible to draw an accurate picture of its graph.

We now follow Heuser (1992, pp. 261-262) for the construction of the tasks. For
convenience, let [a; b] = [0; 1] (the general case is similar). For n € N let

E, = {f € C[0;2] : 3xo = xo(f) € [0;1]: sup A7 |f(xo + h) — f(x0)| < n}
0<h<1

denote the set of functions whose difference quotients at one point are bounded by n.
1) Show that F;, is closed in C[0; 2] for every n € N.

Now, assume that every function in C[0; 2] was differentiable in at least one point in
[0; 1]. The goal of the following tasks is to derive a contradiction.

ii) Under the given assumption, show that C[0; 2] = U,,en E,-

1ii) Use the Baire category theorem to show that there is an m € N and a closed ball
B of positive radius in (C[0; 2], d,) such that B € E,,.

Iv) Use the Stone-Weierstral3 theorem to show that there is a polynomial p € P[0; 2]
and an r > 0 such that B(p,r) € E,, for the m from (iii) and conclude that F,,
contains all functions f such that |f(x) — p(x)| < r for all x € [0; 2].

v) Show that there is a sawtooth function f, whose ascending steps have a slope >
m and whose falling steps have a slope < —m, such that f € C[0; 2] \ E,, for
the m from iii).

vi) Conclude that there is a function in C[0; 2], which is not differentiable at any
pointin [0; 1].

We sketch some parts of the proof: For i), let (fi)ren € F, denote a convergent
sequence with limit f in (C[0; 2], d,). This means that f;, — f uniformly on [0; 2]. For

every k there is an x; € [0;1] such that sup h™Y|f,(xx + h) — fr(x)| < n. By
0<h<1

compactness of [0; 1], (xx)xen has a convergent subsequence converging to an x, €
[0; 1]; we may thus assume that (x; ) ey IS this subsequence. Lete > 0and h € (0; 1)
and define k; < k, < ks in N suchthat |f(ty + h) — f(x) + h)| < eh/4 fork > kq,
lf(x) — fii(x)| < eh/4 for k > k, and t € [0;2], and |f(xy) — f(xg)| < eh/4 for
k>ks. Then, |[f(xo+h)—f(x)l <|f(xo+h)—flx+h)|+I1fC4 +h)—
fie Gae + W]+ |fie e + h) = fir o)l + 1fieCer) = FQGad| + | f Oa) — f(xo)|, which
implies that |f(xqg +h) — f(xp)|/h<e/d+e/d+n+e/d+e/d=n+cfor k>
ks. Thus, f € F, and i) is proven. ii) follows from the assumption and the definition of
the sets F,, and iii) follows from the second part of the Baire category theorem, because
(C[0; 2], dy) is complete and thus one of the F,, cannot be nowhere dense.
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DISCUSSION

The aim of this article was to stimulate a discussion about the mathematical horizon
content knowledge of (prospective) mathematics teachers about functions, while at the
same time contextualizing the challenges in school and the didactic principle of
functional thinking. Starting from the premise that it is fairly uncontroversial that
PMTs learn what can count as a “typical” real number and in what sense, we argued
that PMTs can also learn what a “typical” continuous real function is and in what sense.

On the one hand, we have presented a sequence of tasks that use the Baire category
theorem to show that the set of continuous functions, which are differentiable in at least
one point, is meager in the space of continuous functions with the supremum metric.
This sequence can in principle be used in a fairly elementary way in a course on real
analysis, even in exercises, even though the Baire category theorem traditionally
appears in abstract or functional analysis. On the other hand, we have justified the
treatment of the theorem in the context of mathematics teacher education by locating
it in PMTs’ horizon content knowledge. A crucial point here is that, although the
didactic concept of functional thinking suggests vivid ideas about continuous or
differentiable functions, which are helpful for the elementary functions dealt with in
school mathematics, these ideas are problematic with regard to the general concept of
real function that is indeed introduced or introducible in school, too. Of course, this is
not to argue that the Baire category theorem should be taught in school, but to argue
that PMT should have insights into the breadth and limits of fundamental concepts such
as number and function, which are achievable within their subject-specific resources.
For instance, the elementary functions, which are typical in school in terms of their
frequency of use, are not typical in real analysis in terms of their generality.

We will now underpin the relevance of the Baire category theorem with further
examples that can either be understood in principle with school knowledge, even if not
proven, or contextualize elements from real analysis at university level (see e.g., Jones,
1997/8). The derivative of a differentiable function does not have to be continuous, of
course. But “how discontinuous” can it be? The Baire category theorem can be applied
to show that the set of discontinuities is meager and thus the set of points of continuity
Is dense. Additionally, real analysis courses may cover the fact that if thereisann € N
with f™ (x) = 0 for all x € R, then £ is a polynomial. More is true: If f is infinitely
differentiable and for every x € R there is a derivative order n = n, with f™(x) =
0, then £ is a polynomial (Deiser et al., 2016, pp. 224-225).

The Baire category theorem can also be used to contextualize the Thomae function,
which is, to our knowledge, traditionally used to prove the existence of a function that
Is discontinuous at each rational, continuous at each irrational number, and nowhere
differentiable: This function assigns 1to 0, 1/q to every rational number p/q with,
p €Z,q € N,and gcd(p,q) = 1, and 0 to every irrational number. Students may now
wonder whether there is a function R — R that is continuous at all rational and
discontinuous at all irrational points. Using the Baire category theorem, one can prove
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that this is not the case (Abbott, 2015, ch. 4). This observation places the Thomae
function in the bigger picture of (dis)continuous functions and answers the obvious
follow-up question.

As a last example, we mention a theorem by Morgenstern (Jones, 1997/8, p. 367):
Contrary to a belief from the 19" century, the typical C*-function (i.e., infinitely
differentiable) is not analytic at any point (i.e., locally representable as a power series
at any point). This underlines a drastic difference between real differentiable functions
and complex differentiable functions, which are in turn always analytic (Lang, 1999).

NOTES

1. What may count as “typical” is clearly not unambiguously defined in mathematics. Our examples illustrate that one
can deal with this idea in terms of “(un)countability” (set theoretic) and “(co)meagerness” (topological). We note that
there is also a measure theoretic version in terms of “zero/full measure” as well. The relationship between the topological
and measure theoretic notions is however quite delicate. For instance, there are meager sets with full measure and
comeager sets with zero measure (Oxtoby, 1980).

REFERENCES

Abbott, S.  (2015).  Understanding  analysis (2@ ed.).  Springer.
https://doi.org/10.1007/978-1-4939-2712-8

Barquero, B., & Winslaw, C. (2022). Preservice secondary school teachers revisiting
real numbers: A striking instance of Klein’s second discontinuity. In R. Biehler, M.
Liebendorfer, G. Gueudet, C. Rasmussen, & C. Winslew (Eds.), Practice-oriented
research in tertiary mathematics education (pp. 513-531). Springer.
https://doi.org/10.1007/978-3-031-14175-1_25

Barzel, B., Glade, M., & Klinger, M. (2021). Algebra und Funktionen. Fachlich und
fachdidaktisch [Algebra and functions. Subject matter and subject matter didactics]
Springer Spektrum. https://doi.org/10.1007/978-3-662-61393-1

Bridges, D. S. (1998). Foundations of real and abstract analysis. Springer.
https://doi.org/10.1007/b97625

Deiser, O., Lasser, C., Vogt, E., & Werner, D. (2016). 12x12 Schlusselkonzepte zur
Mathematik [12x12 key concepts in mathematics] (2" ed.). Springer Spektrum.
https://doi.org/10.1007/978-3-662-47077-0

Durand-Guerrier, V. (2016). Conceptualization of the continuum, an educational
challenge for undergraduate students. International Journal of Research in
Undergraduate Mathematics Education, 2(3), 338-361.
https://doi.org/10.1007/s40753-016-0033-2

Greefrath, G., Oldenburg, R., Siller, H.-S., Ulm, V., & Weigand, H.-G. (2016).
Didaktik der Analysis. Aspekte und Grundvorstellungen zentraler Begriffe
[Didactics of analysis. Aspects and basic ideas of central concepts]. Springer
Spektrum. https://doi.org/10.1007/978-3-662-48877-5

Heuser, H. (1992). Funktionalanalysis [Functional analysis] (3" ed.). Teubner.

70



vom Hofe, R., & Blum, W. (2016). “Grundvorstellungen as a category of subject-
matter didactics. Journal fir Mathematik-Didaktik, 37(Suppl. 1), 225-254.
https://doi.org/10.1007/s13138-016-0107-3

Jakobsen, A., Thames, M. H., & Ribeiro, C. M. (2013). Delineating issues related to
horizon content knowledge for mathematics teaching. In B. Ubuz, C. Haser, & M.
A. Mariotti (Eds.), Proceedings of the Eight Congress of the European Society for
Research in Mathematics Education (CERME 8, 6-10 February, 2013) (pp. 3125-
3134). Middle East Technical University (Ankara, Turkey) and ERME.

Jones, S. H. (1997/8). Applications of the Baire Category Theorem. Real Analysis
Exchange, 23(2), 363-394.

Kriger, K. (2019). Functional thinking: The history of a didactical principle. In H.-G.
Weigand, W. McCallum, M. Menghini, M. Neubrand, & G. Schubring (Eds.), The
legacy of Felix Klein (pp. 35-53). Springer. https://doi.org/10.1007/978-3-319-
99386-7_3

Lang, S. (1999). Complex analysis (4" ed.). Springer. https://doi.org/10.1007/978-1-
4757-3083-8

Loewenberg Ball, D., & Bass, H. (2009). With an eye on the mathematical horizon:
Knowing mathematics for teaching to learners’ mathematical futures. In M.
Neubrand (Ed.), Beitrage zum Mathematikunterricht 2009.
http://dx.doi.org/10.17877/DE290R-13138

Oxtoby, J. C. (1980). Measure and category. A survey of the analogies between
topological and measure spaces (2" ed.). Springer.

Roth, M., & Lichti, M. (2021). Funktionales Denken entwickeln und fordern
[Developing and fostering functional thinking]. mathematik lehren, 226, 2-9.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.
Educational Researcher, 15(2), 4-14.

Tietze, U.-P., Klika, M., & Wolpers, H. (Eds.) (2000). Mathematikunterricht in der
Sekundarstufe Il. Band 1: Fachdidaktische Grundfragen. Didaktik der Analysis
[Teaching mathematics in upper-level secondary schools. VVol. 1: Basic questions in
mathematics  education.  Didactics of analysis] (2"ed.). Vieweg.
https://doi.org/10.1007/978-3-322-90568-0

Vollrath, H. J. (1989). Funktionales denken [Functional thinking]. Journal fir
Mathematik-Didaktik, 10, 3—37. https://doi.org/10.1007/BF03338719

Wasserman, N. H., Buchbinder, O., & Buchholtz, N. (2023). Making university
mathematics matter for secondary teacher preparation. ZDM - Mathematics
Education, 55, 719-736. https://doi.org/10.1007/s11858-023-01484-5

Wasserman, N. H., Fukawa-Connelly, T., Weber, K., Mejia Ramos, J. P., & Abbott, S.
(2022). Understanding analysis and its connections to secondary mathematics
teaching. Springer. https://doi.org/10.1007/978-3-030-89198-5

71



Structuralist praxeologies in the perspective of Klein: the case of
connectedness in analysis

Thomas Hausberger' and Reinhard Hochmuth?
'University of Montpellier, France; thomas.hausberger@umontpellier.fr; 0000-0001-6013-1975

*Leibniz University Hannover, Germany; hochmuth@idmp.uni-hannover.de; 0000-0002-4041-8706

This article is a continuation of our previous work on structuralist aspects of analysis at university
in the framework of the Anthropological Theory of the Didactic. We now examine how the teaching
of abstract structures (in particular metric spaces and topology) may contribute to Klein’s
perspective of “Elementary Mathematics from a higher standpoint”. Precisely, on the basis of a
real and abstract analysis textbook used in the transition between Bachelor and Master degree
programs in mathematics and in the light of the notion of structuralist praxeology and its dialectics,
we discuss whether we can defend teaching the notion of connectedness to teacher students as a
means to link real and abstract analyses in the spirit of Klein.

Keywords: Teaching and learning of analysis and calculus, Transition to, across and from
university mathematics, Curricular and institutional issues concerning the teaching of mathematics
at university level; Structuralist praxeologies; Anthropological Theory of the Didactic

INTRODUCTION

At the beginning of the last century, Felix Klein developed material for university
lectures for teacher students in the form of three volumes Elementary Mathematics
from a higher standpoint. Still today, his seminal ideas and methodological
orientations continue to inspire mathematics education research (Weigand,
McCallum, Menghini, Neubrand and Schubring, 2019). In particular, Klein posed the
issue of the relation between school mathematics and academic mathematics, in other
words, how a future teacher can be introduced to further advances in mathematics so
that this knowledge is useful for his or her role as a secondary school teacher. A main
general principle in this endeavour is to underline the mutual connections between
problems in the various sub-disciplines of mathematics, offering a synthetic and
holistic view on mathematics, and to emphasize relations with problems posed at
school. This also concerns their mutual motivation and in particular addressing the
rationale of school mathematics content beyond references that are currently
emphasised as being immediately relevant to everyday life.

At Klein’s time, modern mathematics had not yet taken off, but Klein was aware that
a process of conceptual rewriting of mathematics was taking place in the natural
historical development of the field, and that the fruits of this process should make it
possible to modernise and invigorate mathematics teaching at all levels:

The normal process of development [...] of a science is the following: higher and more
complicated parts become gradually more elementary, due to the increase in the capacity
to understand the concepts and to the simplification of their exposition. It constitutes the
task of the school to verify, in view of the requirements of general education, whether the
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introduction of elementarised concepts into the syllabus is necessary or not. (Klein and
Schimmack 1907, p. 90)

This discourse resonates with the didactical benefits of mathematical structuralism
later put in the fore by Bourbaki in the Manifesto The Architecture of Mathematics.
Concepts and structures are key ingredients of an integrated perspective on
mathematics, and generality may clarify and simplify the exposition. We do not claim
that Klein was structuralist in his pedagogy; on the contrary, he paid great attention to
balance logic and intuition. Our perspective, in a context where mathematical
structuralism has massively impacted university mathematics curricula, is to examine
the extent to which the teaching and learning of abstract mathematical structures at
university can contribute to the implementation of Klein’s vision or depart from it.

We focus in this paper on the case of the relationship between real analysis, as it is
taught at the secondary-tertiary transition, and abstract analysis (metric spaces,
topology, Banach spaces, Hilbert spaces,...). In previous work (Hausberger and
Hochmuth, 2023), we gave historical anchor points of the emergence of such a realm
of structures that generalised real analysis and applied a model, initially developed in
the framework of the Anthropological Theory of the Didactic (ATD) for abstract
algebra, to account for the transition from real to abstract analysis throughout the
Bachelor and Master degree programmes. We used this model to study excerpts of a
textbook (Bridges, 1998), used at the Bachelor-Master transition and chosen for its
didactic project: to make visible how the concepts and theorems of abstract analysis
enlighten real analysis, which is first recapitulated in view of its generalisation. The
main point was to detect the continuities and ruptures that might be observed in the
shift towards abstraction that accompanied the rise of mathematical structures in
analysis, or in our ATD terms the development of structuralist praxeologies.
Moreover, the model puts in the fore a dialectic of objects and structures (see
theoretical framework), in other words a dialectic of the particular and the general or
of the concrete and the abstract that characterise structuralist thinking. The vitality of
this dialectic was observed in relation to the issue of motivating abstract concepts.

This paper is a continuation of the previous work, but with a slightly different focus:
we now consider relationships with school mathematics and teacher training, in the
spirit of Klein. As a case study, we analyse from the viewpoint of structuralist
praxeologies the tasks assigned by Bridges in his textbook around the topological
notion of connectedness in metric spaces and in relation to real analysis. For example,
Bridges generalises the intermediate value theorem (IVT) which is used as a main
motivation for connectedness. Our main research question is the following: on the
basis of this textbook and in the light of our analysis tools, can we defend teaching
the notion of connectedness to teacher students as linking real analysis and abstract
analysis in the spirit of Klein? We begin by presenting our theoretical framework,
and then go on to analyse selected extracts from the textbook using these tools.
Finally, we draw conclusions in relation to the problem posed by Klein, and conclude
by outlining a few extensions we envisage to this research.
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THEORETICAL FRAMEWORK

According to ATD (Chevallard & Bosch, 2020), every human activity consists in the
coordination of a praxis and a logos, hence the key notion of a praxeology,
represented by a quadruple [T/t/6/6]. Its practical-technical block (or know-how)
consists of a type of tasks T together with a corresponding technique t (useful to
carry out the tasks t € T). The technological-theoretical block (or know-why)
comprises the technology 0, a discourse on the technique, and the theory O, the
ultimate level of justification. We continue by presenting the tools developed
specifically in ATD to analyse praxeologies based on mathematical structuralism.
The reader may wish to consult our previous paper (Hausberger and Hochmuth,
2023) for connections with other works offering a praxeological modelling of
mathematical practices in the analysis track at university.

The starting point is the consideration of mathematical structuralism as a method,
which consists of reasoning in terms of classes of objects, relations between these
classes and stability properties for operations on structures (Hausberger, 2018). The
general view of structures thus allows particular properties of objects to be
demonstrated by making them appear as consequences of more general facts
(theorems about structures). Dually, generalisations are put to the test of objects,
hence a dialectical relationship between objects and structures. In praxeological
terms, the structuralist method consists in the passage from a praxeology P =
[T/?/?/Oparicuiar] Where it 1s unclear which technique to apply, to a structuralist
praxeology Ps = [T%/1/0/Ogecwre] Where, modulo generalisation of the type of tasks
(T®), the theory of a given type of structure guides the mathematician in solving the
problem. It is important to point out that this transition (called type 1) leads to a
structuralist praxeology whose rationale is related to its ability to solve concrete
problems (related to P) by a gain in technology permitted by the insight of structures.

Moreover, Hausberger (2018) distinguishes two structuralist levels of praxeologies:
at level 1, structures act as a vocabulary and appear mainly through definitions (e.g. a
task of type T “show that a given function between given metric spaces is bounded”
is solved by checking that the definition of boundedness is satisfied); at level 2, the
technique mobilises general results about structures (e.g. any continuous function
from a compact space into a metric space is bounded). In the process of developing
the level 2 contextualised (since the function and metric spaces are given)
structuralist praxeology, an abstract task is assigned (prove the theorem) to establish
its technology.

The latter task is of type T® “show that any function between metric spaces that fulfils
given conceptual properties is bounded”. At this stage, it remains more or less an
isolated task. But in the teaching and learning of structures, the stage is reached when
praxeologies based on such abstract types of tasks (that concern abstractly defined
classes of objects, e.g. generic functions between generic metric spaces) are
developed. In this context, the key structuralist insight (for the preceding example)

74



that compactness is preserved by continuous mappings comes in the fore together
with other connections between the various concepts that are involved (continuity,
closedness, boundedness, compactness). This is called the type 2 transition, situated
between the Bachelor and Master degree programs. It is important to note that the
new purely abstract praxis /7° shall be anchored on reasoning with concepts that take
their origin in the logos of previously developed structuralist praxeologies denoted Pi.
This connection between the two types of transition is vital for a sound (properly
motivated) development of abstract analysis.

One shall note that generic objects such as generic real functions already appear in
early analysis courses in the context of abstract tasks of what we called pre-
structuralist praxeologies (Laukert et al., 2023), but the properties of functions and
their domain/co-domain (R or R”) that play a role are not fully elucidated in terms of
structures (topological concepts, metric spaces and functional analysis), hence the
terminology pre-structuralist. In fact, analysis mixes different kinds of structures and
some results in real analysis that closely intertwine different structuralist aspects may
be hard to extend to natural structuralist statements or may lead to different general
statements that capture some aspects of the initial problem while abstracting other
aspects. Real analysis certainly constitutes a body of praxeologies that cannot be
reduced to its structuralist dimensions developed and revealed through the abstract
analysis.

To conclude this theoretical framework, let us emphasize key features of structuralist
praxeologies that relate to the perspective of Klein. Our main research hypothesis is
that smooth transitions of type 1 (and 2, to some extent) with a vitality of the dialectic
of objects and structures allows to meet the vision of Klein since: i) structuralist
concepts become tools to solve concrete problems ii) structures unify different
branches of mathematics (e.g. geometry and analysis, by bringing geometrical
insights into analysis through topology) ii1) the conceptual perspective brings a new
foundation to real analysis in terms of more general principles, which increases the
understanding of the reasons why theorems hold true iv) the type 1 transition
connects university to school mathematics. On the opposite, discontinuities in the
type 1 transition hinders the realisation of Klein’s perspective.

ANALYSIS OF THE TEXTBOOK EXCERPTS ON CONNECTEDNESS

The subchapter starts with a definition of connectedness: a metric space is called
connected if it is not the union of two disjoint nonempty open subsets (p. 158). Since
the family of open subsets gives the topology of the metric space, connectedness is a
topological property. Connectedness formalizes the idea that a metric space, or a
subspace of it, “cannot be split into smaller, separated parts”. Since closed subsets are
precisely the complementary sets of the open subsets, connectedness can analogously
characterized by the non-existence of two disjoint nonempty closed subsets whose
union gives the whole space (3.4.1 (i1)). The point of view that connectedness is a
topological notion is further strengthened by presenting a characterization using
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continuous functions (i.e. functions whose preimage of an open set is an open set): a
metric space is connected if and only if there is no continuous mapping from the
space onto {0,1}, the typical disconnected subset (Exercise 3.4.2.2). It is also a first
step in the direction of a generalisation of the intermediate value theorem (IVT) as it
connects the concepts of connectedness and continuity of mappings.

Immediately afterwards the following question is posed: what are precisely the
connected sets in R? This question indicates the type of task T, “determine connected
subsets of a given metric space”. The proof for R (Proposition 3.4.3) uses the
intermediate value property (IVP) of an interval /, which we see as a pre-structuralist
characterisation: / contains the segment [c,d] for any two points ¢ < d in I. Intervals
have been defined comprehensively as subsets of the form |a,b| (open, closed or semi-
open) and characterized by this property (Proposition 1.3.3) in the chapter on real
analysis. The supremum axiom of R is used, but not enlightened in structuralist terms
(concept of completeness). The embryo of a praxeology that is being developed
remains of structuralist level 1, since it uses mainly the definition of connectedness
(and that of open/closed subsets).

Every result on connectedness, contextualised to R, can thus be reduced to the case of
intervals. This leads to question what the structure-oriented extension of
connectedness in metric spaces may bring to real analysis. The answer remains
unclear at this stage. The IVP involves the partial order in R while connectedness
applies to topological spaces in general, but the benefit of generality remains to be
seen.

The following Exercise 3.4.4 establishes the type of tasks T, “prove that a subset of a
metric space is connected”. In the assigned tasks, subsets are given abstractly by
union/intersection of nonempty closed subspaces. The aim is obviously to prove a
structuralist theorem to feed a level 2 contextualised structuralist praxeology based on
the same type of tasks, but no example of such application is given. The next
Proposition 3.4.5, posing the stability of connectedness under taking adherence points
(S to S), as well as Proposition 3.4.6 and exercises 3.4.7 1-2 fit with T,: again, the
considered subsets are defined abstractly by other properties (e.g. SNT# < is non
empty and S,7 connected). So far, the course focuses on structuralist stability
properties of connectedness. With regard to R, however, the results are without
specific gain: e.g., intervals obviously remain intervals by adding adherence points.

New notions are introduced and considered through exercises 3.4.7.3-6: chain
connectedness, connected component, total disconnectedness (the connected
component of a point is the singleton), local connectedness. There is again a task of
type T, resulting in the theorem that a compact, chain connected set is connected.
Moreover, further properties of connected components are established, but without
any contextualisation, except the following: the notions of connected components and
local connectedness are applied in Exercise 3.4.7.7 to give a conceptual proof of the
description of open subsets of R as unions of open intervals. This characterisation has
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already been proved in Proposition 1.3.6 of the real analysis chapter. Here, too, we
cannot see any particular gain from the abstract treatment in metric spaces (except
aethetics to the eye of a structuralist mathematician, which is not a didactical criteria).

Then two tasks of type T; “prove that a subset of a metric space is totally
disconnected” are assigned. In the case of R, any countable subset like Q turns out to
be disconnected (first task), but also the set of irrational numbers (second task),
which are known to be uncountable. One may note that the type of tasks T, may have
been assigned, instead of Ts, to both the rational and irrational numbers (viewed as
metric spaces for the distance inherited from R), in order to introduce the notion of
totally disconnectedness from a bottom-up perspective.

The stability of connectedness under continuous mappings is expressed by
Proposition 3.4.8. That the range of a continuous mapping from a connected metric
space is connected is an immediate consequence of the topological definitions of
connectedness and continuity. The consequence for continuous mappings from a
connected metric space to R is then addressed as the generalised IVT (figure 1) and is
an important consequence of this structuralist principle: theorem 3.4.9 thus elucidates
the structure of the domain of the function so that the IVP on the range holds, but the
codomain remains R without further structuralist insights. Also, the role played by
completeness of R remains somehow implicit in this result, as it was in the
observation that intervals are the connected subsets in R. Finally, this new theorem is
not applied to more general contexts than that of the IVT itself (real numbers), where
as a contextualised level 2 structuralist praxeology based on T, “prove that the range
of a mapping has the IVP” could have been developed to assign a practical rationale
to connectedness and the generalised IVT altogether.
A verv important consequence of Proposition (3.4.8) is the following

seneralised Jutermediate Value Theorem.

(3.4.9) Theorem. Let f be a continuous mapping of a connected metric
space X anto R, and a, b pomts of flX) such that a < b Then for each
€ la,b) there exests © & X such that flx) = n.

Proof. By Propositions (3.4.3) and (3.4.3), f{X) is an interval, The result
l,ﬂ-"l LIRS i“““""““l-}l_\- i

Figure 1: the generalised intermediate value theorem

Then a couple of exercises that draw general consequences from the continuity of the
distance in metric spaces are posed (e.g. 3.4.10.1 about unbounded connected metric
spaces), without hinting at the scope of these results and without further enlightening
the real analysis context.

Proposition 3.4.11 connects to the notion of compactness and uniform convergence:
whenever X is connected, the uniform continuity of every continuous real valued
function on X is equivalent to the compactness of X. We see this result as emblematic
of the transition of type 2. Nevertheless, the uniform continuity of functions defined
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on compact, i.e. bounded and closed, intervals of R, is a well-known result in real
analysis. That bounded and closed are not only sufficient but also necessary is usually
justified by counter-examples considering continuous functions on unbounded as well
as on bounded and open intervals. The proposition enlightens the role of the concept
of compactness in a more general context considering real-valued functions on
connected metric spaces. It in particular shows in which sense compactness is
necessary for uniform continuity to hold and establishes the real analysis result on a
more general ground. Dually, the real analysis background serves as an anchor point
for the rise towards abstraction, hence serves the transition. Unfortunately, these
connections remain implicit in the textbook, they are not discussed.

In the end of the chapter, the notion of path-connectedness is considered in metric
spaces. It generalises the idea that a subset does not consist of isolated separate parts
in the sense that two points can be joined by a path lying wholly in the subset.
Proposition 3.4.12 establishes that path-connectedness implies connectedness. Path-
connectedness is a notion which is considered in multivariable real analysis contexts
to also generalise the concept of interval in R. Another, perhaps more straightforward
possibility, would be convexity, where the choice of paths is restricted to straight
lines. Convexity is stronger than path-connectedness. That convexity is not discussed
as alternative can be interpreted as a symptom for the focus of the author on
topological perspectives in his presentation and a lack of meta-discourse on the raison
d’étre of generalised notions in a view to Real Analysis needs. Regarding R",
Proposition 3.4.13 establishes that connected open subsets of R" are path-connected,
i.e. connectedness and path-connectedness are equivalent for open sets in R". The
obvious question about the case of closed connected subsets of R" is not raised (a
negative answer). Thus, with a view on a real analysis context, the difference
between connectedness and path-connectedness remains weakly clarified.

Altogether, the praxeology based on the type of tasks Ts “Prove that a subset of a
metric space is path-connected (or not)” is only weakly developed. Obviously, neither
T, nor Ts are relevant in R, since the connected subsets in R are the intervals and
intervals are trivially path-connected. Are the types of tasks T, and Ts relevant when
contextualised to R" i.e. in the multivariable real analysis context? Exercises 3.4.16.1
contains the only example of subsets in R" whose path-connectedness is questioned.

The set B=([x,y| € R*:0<x< 1,y=Sin%}, i.e. the graph of a function defined on a semi-

open interval, and the set A={(0,y) e R>:~1<x<1], i.e. the set of adherence points of
the graph, are considered. Then A U B is not path-connected. We may infer that, in
the structuralist perspective of the author, this task of type Ts is assigned in order to
present a counter-example concerning path-connectedness of closed connected
subsets and stability of path-connectedness under taking adherence points.

At this point, we asked ourselves why the following relationship to real analysis,
which also appears relevant for school mathematics, was not established: at school,
the continuity of a function is typically explained by the fact that the graph of the
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function can be drawn “without lifting the pen”. This descriptive property can be
formally interpreted as the path-connectedness of the graph. This is supported by the
observation/theorem that a real-valued function defined on R is continuous if and
only if its graph is path-connected in R

Finally exercises 3.4.16 2-3 question the stability of path-connectedness under union
and intersection, which holds true under some extra conditions. Again, these are
structuralist aspects whose practical usefulness is not underlined through
contextualised level 2 structuralist praxeologies.

DISCUSSION

To summarise, we observed that the definition of the concepts and their embedding in
the theory of metric spaces, as well as resulting new concept-based proofs, appear to
be poorly motivated, despite the relationship with the intermediate value theorem
(IVT). A contributing factor is that the scope of structuralist praxeologies on the topic
of connectedness is scarcely or not developed at all and the types of tasks remain
fairly limited in number and diversity. In particular, level 2 contextualised
structuralist praxeologies are missing. As a result, a raison d’étre cannot come to life.
In addition, the role played by other properties of real numbers (such as completeness
or the ordered field structure) is not discussed in relation to the IVT. Only
connectedness is elucidated. This is another reason why the results in the chapter
under consideration tend to remain isolated. Large parts focus on theoretical
development (the type 2 transition), which for the reasons mentioned has little
explicit connections to the type 1 transition. These observations, formulated in
praxeological terms with a view to structuralist aspects and their transitions, have
consequences on Klein’s project that we will now underline.

The starting point of the contribution was the question of the educational benefits to
teach student teachers connectedness in metric spaces. Criteria for an answer
emerged from connections between Klein’s project and the point of view of
structuralist praxeologies, mainly the idea of smooth structuralist transitions as
developed in the theoretical framework. From our analysis of a typical textbook, our
position i1s divided. We begin by the drawbacks, which relate to inadequate didactic
means to achieve the type 1 transition on the topic of connectedness.

a) Basically, the concept of connectedness remains weakly motivated by
considerations on the real numbers. Starting from intervals and their properties,
other possibilities to generalise their features could have been reflected in the
transition to R", such as convexity or path-connectedness. To decide between
these different alternatives, the question of the stability of properties under a
continuous mapping could have been asked, in the structuralist spirit. In
particular, this structuralist behaviour is the key point to tackle the following
issue: which alternative leads to a generalisation of the intermediate value
theorem?
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b)

The textbook primarily presents conceptual proofs whose potential to tackle
interesting questions in the perspective of Klein’s project is still doubtful. The
general concepts appear to be motivated by the goal of generalisation itself, but
are hardly anchored in real analysis issues (other than the IVT). For example:
Exercise 3.4.7.7 (determination of the open sets of the real line) mobilises a
conceptual proof of a connection already established in real analysis, which
may be interesting for pure mathematicians and may be satisfying in terms of
aesthetic value, but the added practical value for student teachers remains at
least unclear and is actually not worked out.

With regard to the concept of connectedness, the text to a certain extent
constitutes something that remains stuck between two worlds: on the one hand,
a (relatively) concrete world of real analysis based on real numbers as school
objects and already considered in terms of axioms, and on the other hand a
(relatively) abstract world of metric spaces. A dialectic between concrete and
abstract (in our framework, objects and structures) is thus not brought to life.

Nevertheless, the text provides starting points for a depiction of connectedness that
could contribute to Klein’s agenda. What are such starting points?

a)

b)

Connectedness in Q could have been investigated: are the connected sets there
also the intervals? Unlike the textbook, the definition of a totally disconnected
subset would have arisen as a concluding step of this investigation and not as a
starting point.

Similarly, path-connectedness may have been related to the process of
formalisation of the intuitive idea that the curve of a continuous function can
be drawn without lifting the pen: continuous real functions are characterised by
the path-connectedness of their graph. Exercise 3.4.16.1 of the textbook further
elaborates on this idea to construct a counter-example to structuralist assertions
without making explicit this connection with the intuitive notion of graph from
school mathematics.

The question we formulated in point a) of the drawbacks could have been
investigated to motivate the notion of connectedness. The idea that a missing
point in the interior of an interval decomposes it into two disjoint closed
subsets may serve as an argument to introduce the definition, among other
arguments. On a meta level, the following issue needs to be addressed to
implement didactical aspects of this investigation: what degree of
generalisation beyond metric spaces would be adequate to foster the
development of helpful structuralist insights among teacher students? In
particular, to what extent should general topology be developed?

Although the textbook attempted to elaborate abstract analysis from real analysis in a
bottom-up perspective, the overarching viewpoint of structures is dominating the
presentation. In our opinion, fulfilling Klein’s project would require a different kind
of textbook that more successfully implements a dialectical point of view between
real and abstract analysis, in other words between objects and structures.
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GENERAL CONCLUSION AND OUTLOOK

The notion of structuralist praxeology in ATD, with its structuralist levels, its two
transitions and the objects-structures dialectic, has made it possible to study Klein’s
didactic problematic by virtue of the continuities and ruptures that it highlights in the
passage from real analysis to abstract analysis. Both the research on structuralist
praxeologies and that on Klein’s pedagogical programme are inscribed in a
questioning of transitions (Klein’s double discontinuity for the former and transitions
within university for the latter).

The use of the notion of structuralist praxeology is not limited to the analysis of what
already exists, but also makes it possible to engage in didactic design with the aim of
developing structuralist praxeologies useful to future teachers. In this endeavour,
particular attention should be paid to the objects-structures dialectic and the process
of questioning objects (e.g. continuous real functions and their properties) in the light
of structures (Hausberger, 2019) may be envisaged in the didactic perspective of
Questioning the World (Chevallard & Bosch, 2020) in ATD. This is one of the main
avenues for the development of this work, as our analysis has shown punctual
weaknesses of a textbook while at the same time identifying avenues for the
implementation of Klein’s ideas, around the notion of connectedness as an
emblematic case.
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Explorative and ritualistic routines, and the interplay between them have been the main
foci of commognitive research on routine use, with less focus on the routine of deeds.
The study presented here concerns engineering students’ routines of deeds while using
an animation tool for visualizing the mathematical object ‘integral’ as an area in a
motion-context. We study the students’ learning opportunities in four task situations.
Inspired by the work by Nachlieli and Tabach (2019), we modified their
methodological tool for analysing ritual-enabling, exploration-requiring opportunities
to learn, and added a third component: deed-oriented opportunities to learn. In our
study, we observed opportunities for deed-oriented routines to enable more explorative
routines.

Keywords: Teaching and learning of mathematics in other disciplines, Teaching and
learning of analysis and calculus, Exploration-requiring learning opportunities, Deed-
oriented learning opportunities.

INTRODUCTION

Engineering students are introduced to a variety of tasks during their studies. Some of
the tasks are more authentic than others. Studies show that there is a gap between
educational practices and professional practices where the tasks during studies are
more mathematical inclined and the mathematics used in workplaces are more applied
to tangible objects. There is a concern that the engineering studies are not addressing
the specific needs of engineering students for preparing them for their professions
(Gonzalez-Martin et al., 2022).

The mathematical object ‘Integral’ is one of the important objects engineering students
learn about during their studies. In a frequently-used textbook for mathematics in
engineering education, Calculus: A complete course by Adams and Essex (2022),
‘Integral’ has received considerable attention. The book introduces the object as
realizations of areas as limits of sums, then introduce the definite integral and its
properties, which leads up to the fundamental theorem of calculus. Then a basic area
problem (find the area of region R) is presented with following examples and tasks for
the students to solve. Thereafter some integral techniques are presented: integration by
parts, integrals of rational functions, inverse substitution, other methods for evaluating
integrals, improper integrals, the trapezoid and midpoint rules, Simpson’s rule and
other aspects of approximate integration. Lastly, applications of integration and
techniques are introduced (e.g., how to calculate volumes of solids) and corresponding
tasks provided before other mathematical topics are focused on in the rest of the book.
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The tasks offered to the students are mostly mathematical, with less attention to a real-
world context.

Our study contributes to the research on engineering students’ learning opportunities
in mathematics. We view learning opportunities as students’ opportunities “to build or
strengthen connections among related mathematical ideas—and to consider these ideas
in relation to how [other] students think about the ideas” (Silver et al., 2007, p. 261).
In this paper, we investigate engineering students’ mathematical discourse while they
are using an animation tool designed for educational purposes in engineering
education. The tool animates two cars’ motion and visualizes their velocity-time curves
(the tool is presented more in detail later in the context of study).

THEORETICAL BACKGROUND AND RESEARCH QUESTION

We take a commognitive perspective on learning. Within commognition, a
mathematical discourse is determined by the participants’ word use (oral or written use
of mathematical keywords), visual mediators operated upon (such as graphs, diagrams,
symbols etc), routines (established patterns in how to solve a task which are repeated
in similar situations) and narratives (stories about mathematical objects that can be
endorsed). Visual mediators are any visual realization of an object of the discourse.
The object may be a primary object existing outside the discourse and artifacts created
for communication purposes. A narrative is utterances, spoken and written, framed as
a story about mathematical objects operated upon which can be endorsed by the
mathematical community (e.g., theorems and axioms). The discursive process of
convincing that a narrative can be endorsed is the substantiation of a narrative (Sfard,
2008).

Routines: Rituals, explorations and deeds

Routines are repetitive patterns we turn to in certain situations: from saying ‘hello’ to
the cashier when buying items in a store to how you regularly proceed in solving a
familiar mathematical task. WWhen we meet a familiar situation, we are most likely to
behave in a way we have learned by others, leading us to act in similar ways. A routine
consists of three parts: initiation, procedure and closure. The routine is being initiated
by a task to complete, where you conduct a procedure and decide under which
conditions the procedure is completed (Sfard, 2008).

There are three types of routines: explorations, rituals and deeds (Sfard, 2008). An
explorative routine is characterized by explorative participation, focusing on producing
mathematical narratives that can be endorsed by the mathematical community. Ritual
routines are routines consisting of a rigid procedure and whose success is depending
on others (e.g., the teacher or another more well-versed participant in the discourse).
Deeds are routines consisting of transforming objects (discursive or primary) to new,
transformed or re-arranged objects (discursive or primary), e.g., transforming animated
cars visualized in a digital tool (see Figure 1). We want to contribute to this line of
research, focusing on engineering students’ learning opportunities related to deeds.
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Deeds are divided in two types: practical deeds and discursive deeds. Practical deeds
serve as a catalyst for a transformation of primary objects (objects existing outside of
the mathematical discourse), while discursive deeds have a goal of a change in
discursive objects (e.g., manipulation of an equation to get the unknown value to
become a certain numerical value) (Sfard, 2008).

Ritualistic, explorative and deed-oriented learning

Learning mathematics is viewed as “a process of routinization of learners’ actions”
(Lavie et al., 2019, p. 153). The initial routines are most likely implemented as rituals.
That is, for a learner to enter a new discourse, he or she is most likely to imitate the
actions by participants who are more well versed in the discourse. Thereafter, these
routines are expected to gradually become explorations through a de-ritualization
process. The learner is expected to move from asking oneself ‘How do I proceed?’ as
focused on in ritual routines to ‘What is it that I want to achieve?’ as focused on in
explorations (and deeds). The de-ritualization process may be slow and gradual, where
the move from one type of a routine to another is depending on the learners’ awareness
of its practical application (Lavie et al., 2019).

There are two levels of learning: object-level and meta-level learning (Sfard, 2008).
Object-level learning involves “endorsing new narratives about familiar objects”
(Nachlieli & Tabach, 2019, p. 256), while meta-level learning involves a use of
keywords in a different way, leading to a transition between two incommensurable
discourses (Sfard, 2008). In the latter, the ‘rules of the game’ changes, in which
students are engaged in a discourse about their discourse.

Some researchers focus on designing tasks that support a particular routine use, in
particular explorative routines (Cooper & Lavie, 2021). Baccaglini-Frank (2021)
shows how dynamic interactive mediators can foster high school students’ explorative
routine use in mathematical discourse.

Nachlieli and Tabach (2019) identify ritualistic teaching goals while studying 11
lessons in an eight-grade classroom from a TIMSS study (acronym for Trends in
International Mathematics and Science Study). They conclude that a ritual-enabling
opportunity to learn (teacher’s actions providing students with tasks that can be solved
using a ritualistic routine) may act as a departure point for exploration-requiring
opportunities to learn (teacher’s actions providing tasks that can be solved successfully
only by participating exploratively). An opportunity to learn was categorized as ritual-
enabling when the students were offered tasks that can be successfully solved in a
ritualistic manner (performing a rigid use of procedures previously learned). An
opportunity to learn was categorized as exploration-requiring when the tasks require
an explorative participation to be solved successfully (focusing on producing an
endorsed narrative). In this study, we focus on a deed-oriented opportunity to learn as
when the task can be successfully solved by directly transforming mathematical or
primary objects. Our research question is:
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What are the learning opportunities from deed-oriented participation using an
animation tool?

METHODS
Context of study

Our participants were 1% year engineering students enrolled in an elementary physics
course at a public university in Norway. They had previously finished an elementary
calculus course, including integral as an area below a curve. We give the students the
fictive names Erik, Sam and Tom. They participated in the study outside of regular
classes. They engaged in a new task situation consisting of four questions and with
access to a digital animation tool called Sim2Bil. Sim2Bil can be seen in Figure 1.
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|
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Figure 1: The interface of Sim2Bil

Sim2Bil offers an animation of two cars driving in a straight line from a start line to a
finish line. The cars’ velocity functions can be inserted in the bottom right corner of
the interface. The velocity-time curve for each of the cars can be seen in the bottom
left corner. The shaded regions beneath the two curves will be shaded as the animation
runs. The students can realize the shaded regions as the cars’ distance travelled. The
pedagogical tool is designed to realize integral as an area under a curve and an
accumulation function when running the animation. The students were offered the
following four tasks:

T1: Press ‘Start’ in the program and explain to each other what happens. What
do the shaded regions represent?

T2: Determine other values in the table so that the cars drive with different
velocities and arrive at the finish line simultaneously.
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T3: What can you do to make the green car only halfway when the red car
reaches the finish line?

T4: Find the velocity to the green car and the red car so that v2 is half of v1 when
they arrive at the finish line simultaneously at four seconds. Can you prove
that your answer is correct?

In the first task (T1), the question of what the shaded regions are, the students are giving
an opportunity to realize the definite integral as areas under curves and integrated
velocity functions as distance covered. The cars’ velocities can be integrated with
respect to time to find the distance travelled at any specific time. These realizations can
be derived by realizations of velocities as the derivative of positions with respect to
time and the integral as an accumulation function. Several velocity functions can be a
solution to each of the tasks 2-4, and the students are expected to determine the degree
of polynomial functions and further use integration procedures. They might also reason
about the areas under the two curves. In T4, the students are asked to take a meta-
perspective on their discourse when asked to verify their answer.

Discursive analysis

The students’ task situation was videorecorded and later transcribed. For our analysis,
we took into account the students’ word use (words spoken), visual mediators operated
upon, narratives produced (students’ stories about the mathematical objects involved
which can be endorsed by the mathematical community) and routines established
(repetitive patterns for how to solve a task where the task to be solved is determined
by the task performer). Further, we used the questions in Table 1 (see the second
column) to identify the types of routines the students were engaged in.

We used a modified version of the methodological lens by Nachlieli and Tabach
(2019), presented in the form of a table (Table 1), and included deed-oriented OTLs
(opportunities to learn) as task situations that invite students to perform deeds. The
rows in Table 1 relate to routine stages and concern the “when” (initiation and closure)
and “how” (procedure) of a routine. The cell directly to the right of each of these three
routine stages includes questions to describe each of these stages. The cells in the other
columns to the right, include descriptions of what to look for to determine whether the
task situation offers ritual-enabling, exploration-requiring or deed-oriented learning
opportunities.

We kept the original meaning of the terms ritual-enabling and exploration-requiring as
participants’ actions that provide tasks that could be successfully performed in a
ritualistic or explorative manner without necessarily actually performing the ritual
and/or explorative routines. We considered the teacher to be implicitly present through
the questions and opportunities to learn through the animation tool. By deed-oriented
learning opportunities we mean actions that were oriented towards providing tasks that
could be performed by a change or re-arrangement of primary or discursive objects.

Thereafter, we used the questions in Table 1 to identify opportunities to learn offered
in the task situations as ritual-enabling, exploration-requiring or deed-oriented.

86



OTL types Ritual Exploration Deed-oriented

Routine stages -enabling -requiring

1. What is the | How do you | What do you | What do you want to

Initiation | question proceed? want to achieve?
posed to or achieve?
raised by
the
students?

2. How is the | Students are | Students are | Students are expected to

Procedure | Procedure | expected to | expected to change primary objects
of the apply arigid | choose from | (existing independent of
routine procedure alternative discourse) or discursive
determined | that was procedures. objects (originate in
? previously discourse) to new,

performed transformed, or
by others in rearranged objects.
similar
situations.
What is the | Students are | Students are | Students are expected to
agency of | not expected | expected to make independent
the to make make decisions.
students? independent | independent
decisions. decisions.

3. Closure | What type | A final Stating the Stating the outcome (or
of answer | answer. If new narrative | an expected outcome) of
does the reasoning is | produced. If | the change of primary or
students provided, it | reasoningis | discursive objects.
expect? details the prov_ided, it If reasoning is provided,

steps of the | details the it details the steps of the
applied mather_nat|ca| physical manipulation.
procedure. reasoning
involved.
Who Others (e.g., | The student The student (based on the
determines | the teacher). | (based on outcome).
the end mathematical
conditions reasoning).
(to indicate
the task has
ended)?

Table 1: Methodological lens — ritual-exploration-deed OTL’s.
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RESULTS

In this section, we first introduce a summary of the students’ work during their 45
minutes session with the four tasks. Thereafter, we highlight some excerpts from our
data and discuss our results on what can be achieved by deed-oriented OTL’s.

A summary of the students’ work

The students started to get familiar with the task situation. They immediately recalled
the shaded regions as the cars’ distance travelled when answering T1. Then, Erik began
to explore the animation tool by inserting velocity functions and play the animation.
Tom started to mathematize the given problem by suggesting setting up an equation
set. Sam paid attention to what the previous two were doing. The way the students
approached the task situation was repeated during the whole session. While Tom
repeatedly tried to draw Erik’s attention towards mathematizing the problem and
integrating the chosen equation set to find velocity functions, Erik was more drawn
towards Sim2Bil to find an answer there. Once Erik did not succeed in finding
appropriate velocity functions through Sim2Bil to meet the requirements in the tasks
(T2-T4) after several attempts, he turned towards Tom and tried to keep up with his
mathematizing. Tom continued to explore, but when he sees that Erik does not have
the means to continue on his own nor follow Tom’s explorations, Tom took a different
approach. He turned to Erik, explaining step-by-step how they can proceed and thus
offered Erik a ritualistic way of acting. We interpret Tom’s attempts as offering Erik a
ritual-enabling opportunity to learn for inviting him to his more explorative way of
acting.

Deed-oriented learning opportunities enabling explorative routines

In the following excerpt, the students work on the task T3 in which Tom suggests
integrating two velocity functions but does not follow the requirement in the task T3
(distance s1 should be half of s2).

Tom: Ehm... Then we have two things to integrate. We shall have when t equals
four... then sl equals s2.

Erik: No, no, no.
Sam: No, it should be...
Erik: The green should be halfway when the red car arrives at the finish line.

The students are talking about that they are now seeing the outcome to be the same.
Erik: Isn't it just to multiply one of them [the velocity function] with two?

Tom: Then, then it can be something like...Hm...Yes, or if we set it equal to two
hundred then of course.

In this excerpt, the students start a discussion where they find out that they see the
outcome to be different. At this stage, Tom thinks the cars should travel the same
distance as in T2. The students continue to discuss and agree on the movements of the
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cars to be in accordance with the requirements of the task (T3) and agreeing on how
they should proceed. Once the students have derived two velocity functions and played
the animation where they see the cars’ movement towards the finish line, they start to
comment on what they see:

Erik: It certainly looks halfway, but can we measure it in some way?
Sam: Integrate again?
Tom: Now we have actually calculated it.

The students find an interactive arrow (in the bottom left corner of the interface of
Sim2Bil). They place the end of the arrow close to one of the cars and then extend the
length of the arrow until the head of the arrow is placed at the finish line. The
magnitude of the length of the arrow appears at the screen. In the following excerpt,
Tom draws their attention to what they previously have done.

Tom: Do you see... Previously, right... we decided that just after four seconds, it
should have gone four hundred meters. And then we in fact inserted in that
after four seconds, that one should have gone two hundred meters, so...

We interpret that the students had different ways of convincing that their answer can
be substantiated. For Tom, it was enough with the narratives that have been developed,
while Erik seeks a substantiation through the animation tool (either by watching the
cars’ movement or measuring the distance travelled for the cars).

In the following excerpt, the students work on T4. After they decided that v1=100m/s,
Erik starts by saying that they need to find a function that has a certain value (50m/s,
half of v1) at the finish line.

Erik: And then we just have to find one or another function that makes that one...

Tom: That makes that there fifty [pointing at the end of the curve in Sim2Bil].

Erik: It is fifty there when it hits. And then... it is this one [the green car] ... starts
in hundred.

In the above excerpt, the students agree on what the numerical value of the velocity
function should be at a certain time (v2(4) = 50). We interpret that deed-oriented
learning opportunities within Sim2Bil offer the students with something to explore, in
which Tom takes the leading role. In the next excerpt, the students talk about how they
can substantiate their answers and thus are engaged in meta-level rules.

Tom: We have proven it with those there [points at his writings].
Erik: But we do see that it stops at half of the other [points at the end of the curve].
Sam: Oh yes, and you see that there is a relation between the area under the curve

which is the integral of velocity.
Further, Tom states that they can calculate the velocities at a certain time.

Tom: We can calculate the velocities, right. So, if t equals four at both....
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Erik: Mhm.
Tom: And then we get half there [points at one of the velocity functions].
Lastly, Erik reflects on what they have done during the session.

Erik: I have never thought that we could use the area under the curve and just set
it equal to...and then play around.

DISCUSSION AND CONCLUSION

In the following section, we discuss what can be gained from deed-oriented learning
opportunities. In the task situations, the students had an opportunity to engage in deeds
but were not successful in using only deeds to solve the tasks. The tasks the students
were engaged in were exploration-requiring tasks (i.e. the students needed to
participate exploratively to successfully solve the tasks) and thus provided explorative-
requiring opportunities to learn. In our analysis, we observed deed-oriented learning
opportunities served as a common ground for the end results the students could agree
upon. This further might serve as a catalyst for engaging in more explorative routines
and explorative-enabling opportunities to learn. The animation of the shaded regions
beneath the curves in Sim2Bil gives the students an opportunity to realize integral as
an area and helping them to recall a previously endorsed narrative of velocity as the
derivative of the position with respect to time. In this situation, the learning is at the
object level, where students are giving opportunities to develop new narratives about
known mathematical objects involved, such as integrals and functions, or to remember
or connect already endorsed narratives about these objects.

In the task situations, we also observe opportunities to learn at a meta level. The
animation tool enabled the students to verify their answers, and for Erik, the tool served
as the ‘ultimate substantiator’ for convincing that their narrative can be endorsed. For
Tom, the calculations and their reasoning were enough to convince that their narrative
holds. For him, narratives are endorsed by deriving new velocity functions based on
integration procedures. Even at the end of the session, when Tom repeats how their
narrative can be endorsed by the last question in T4, Erik still turns to Sim2Bil and
says that they can see it on the appearance of the curves. Changing the meta-rules of a
discourse, as in this case is about changing how they substantiate their narratives,
seems to be a demanding task. For a change in the meta-rules to happen, new
mathematical objects have to be introduced (Sfard, 2012). The students’ different
approaches during the session reveals that there is an opportunity for meta-level
learning already from the beginning of the session. To understand what can be done to
accomplish the tasks, to understand the ‘rules of the game’, offers opportunities for
meta-level learning. The students can start by choosing polynomial functions to
integrate, which does not seem legitimate for Erik, and offers an opportunity to engage
in a new discourse about integrals.

More research on engineering students’ work on tasks they can engage with in different
ways and how they negotiate discourses are needed. More, specifically, we interpret
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that more research is needed on students’ engagements with deeds in their engineering
studies and in their professions and whether these engagements differ from each other.
In our data, we see also how Tom invites Erik into his more explorative discourse by
offering a more ritualistic way of engaging with the tasks (offering step-by-step
procedures). This corresponds with the results by Nachlieli and Tabach (2019): ritual-
enabling OTLs may act as catalysts for explorative-requiring OTLs. However, by also
focusing on deeds, we gain more insights into engineering students’ learning processes.
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The knowledge gap between high school and university level mathematics is a
persistent issue that hinders students in their academic career. Freshman Civil
Engineering students at the University of Twente, Netherlands, struggle with
passing entry level Calculus courses. In 2022, a workshop was introduced to help
students with their prerequisite knowledge; still, many students could not pass
these courses. Capitalising on the idea behind the workshop, a fully digital course
was introduced in 2023. In this research we dive into the design of the contents
of this course. Furthermore, we investigate its impact on student performance
with respect to previous years using a qualitative approach: interviews with
second year students provide, to this avail, a valuable comparison.

Keywords: transition to university mathematics, digital resources in university
mathematics education, gap between high school and university

INTRODUCTION

The knowledge gap between high school and university mathematics is a
reoccurring issue which heavily impacts students. This effect is rather well
documented in literature, with different countries and institutions trying to ease
this transitio. In the past years the Netherlands, for example, has tried to combat
and bridge this gap by reforming and adjusting the high school mathematics
curriculum to better develop basic skills and understanding of mathematics
(Rijksoverheid, n.d.). This was done in an attempt to motivate students to put
more effort into studying the subject as, compared to their peers in other
countries, these students show less interest in mathematics: they often do not find
the subject important enough, but are concurrently more confident in their
knowledge than peers in other countries (SLO, 2023). The importance of
mathematics within other subjects and society has been underlined to encourage
students to perform better as correlation has been found to exist between the
students’ results in their final national high school exam, their GPA during their
first year of university and their eventual graduation from a Bachelor study
programme (De Winter & Dodou, 2011).

At the University of Twente in Enschede, the Netherlands, students from a variety
of engineering programmes struggle with finding their footing when it comes to
mathematics subjects. Experience shows that students falter when met with the
introductory Calculus course which is named as Calculus 1A. This struggle is
experienced even in spite of the course being structured to be, at least for the
Dutch curriculum, a direct successor of high school mathematics.
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In an attempt to aid the students' learning, we focused on the Bachelor programme
of Civil Engineering (CE), which in recent years has seen an increase of freshmen
per cohort while also experiencing an overall decrease in the passing rate for
Calculus 1A, as can be seen from Table 1. As a consequence of this, many
students repeat the subject multiple times, and may continue to struggle with their
mathematical basis. Many of those who pass, seem to do so barely as partially
indicated by Table 1.

Year | Average points | Pass rate: Main | Pass rate: Resit | Total pass rate
out of 22 exam exam

2020 12.03 61.54% 35.71% 71.69%

2021 11.98 54.41% 40% 68.11%

2022 10.64 54.69% 28.57% 65.63%

Table 1: Overview of Civil Engineering results for Calculus 1A across three years.

In 2018, CE switched from being an international programme, further increasing
the diversity in the mathematical background and present within the classroom.
This made interventions by lecturers to cater to knowledge gaps of all students
more difficult and less effective. Students also indicated that they found
themselves struggling with topics they assumed to already have mastered, such
as working with fractions; this made them feel left behind compared to their peers,
further differentiating the level of understanding within the classroom.

In 2022, a mathematics workshop, in the form of a lecture accompanied by
exercises, was given, just before the start of Calculus 1A, to assist CE students in
bridging this knowledge gap. The intention was also to assess the students’
prerequisite knowledge: this would give the lecturer a much clearer picture of
which topics may require additional attention. This workshop also provided
students with a soft introduction to the subject of Calculus 1A.

The abovementioned workshop served as the inspiration for the first iteration of
the Bridging Course: a fully online course which simultaneously tests and
supports students in their pre-university mathematics knowledge by providing
them with immediate feedback. This course was developed throughout 2023 and
was first utilised during the academic year 2023/2024. In this study we elaborate
on how the contents of this first iteration of the Bridging Course were structured.

Theoretical framework

For more than three decades, scholars have closely examined the challenges
students face in transitioning from secondary-level mathematics to tertiary-level
mathematics. This focus has intensified due to concerns about enrollment and
dropout rates in tertiary STEM (Science, Technology, Engineering and
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Mathematics) programs (Hernandez-Martinez, 2016) including mathematics
(Rach & Heinze, 2017; Pinto & Koichu, 2023). This phenomenon has been
observed to be consistent across different countries and time periods (Higgins &
Belward, 2009; Luk, 2005; Silius et al., 2011).

This phenomenon is notably prevalent in Europe, where mathematics learning
outcomes often lag expectations. The alignment of Eastern European educational
systems with those of the West worsens this gap, hindering efforts to increase
STEM enrollments and leading to higher dropout rates (Mustoe & Lawson, 2002;
Pinxten et al., 2015). First-year engineering students encounter increasing
challenges in effectively completing foundational mathematics courses, essential
for their subsequent mathematical and scientific advancement, which
significantly influences students' confidence in their academic abilities (Parsons,
2004; Rylands & Coady, 2009). Additionally, educators face the formidable task
of determining an instructional level that accommodates the diverse learning
requirements of their students within the classroom setting (Metje et al., 2007).

Initial research in this field, explored the epistemological contrasts between
school mathematics and professional mathematical practices (Tall, 1991).
Subsequently, scholarly focus has transitioned from individual student
perspectives to encompass sociocultural, institutional, and affective dimensions
influencing the transition process and its implications for student learning
outcomes (Artigue et al., 2007; Clark & Lovric, 2009; Di Martino & Gregorio,
2019; Gueudet, 2008). Some of these transition courses were structured by means
of a blended learning approach (Bardelle & Di Martino, 2012) taking the
transition course from a hybrid aspect.

Within the literature, no transition course was identified that combines online
testing and instruction while offering immediate feedback through embedded
questions within instructional videos, akin to the approach adopted in the
Bridging course.

The research question of this study is twofold: first, introducing the design of the
Bridging course along with its rationale; second, investigating the enhancement
of students' learning with the Bridging course compared to previous years.

METHODOLOGY

The Bridging Course has been developed keeping both the background and
learning goals of students in mind. To this effect, we detail below the structure of
the Bridging Course as well as how this was achieved: to this avail, both the
required pre-knowledge, learning goals of Calculus 1A and contents of the
Bridging Course are laid out. We also include how and when the Bridging Course
was implemented and how our preliminary results were achieved.

In order to be able to provide students with immediate feedback, the Bridging
Course has been developed in CANVAS, the learning management system at the
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University of Twente. The course consists of three main topics, which are
subdivided in 19 subtopics. For each subtopic, skills are defined (each attached
to a learning goal) that the students need in order to approach Calculus topics with
more ease. For each of these skills, three parts were developed: a test question,
an interactive explanatory video and a post explanation question. The test question
aims to test whether the student already owns the skill at hand. If the student
successfully completes this question, they may move on to the next skill,
otherwise they are redirected to an explanatory video. All videos are made
interactive by the presence of embedded questions that enable students to check
their understanding of the explanation. After completing the video, students are
further directed to the post explanation question: this wraps up the skill by testing
whether the student has gathered on it. The post explanation question is designed
to be of equivalent level as the test question. Because of this structure, depending
on the student’s level of mastery of a certain topic, the course changes in length:
it effectively adapts to the needs of the individual student.

The topics and questions of the Bridging Course were chosen and designed
keeping in mind both the prerequisite knowledge that students are meant to have
based on the high school curriculum, as well as the mathematics knowledge
required for the Calculus 1A, and teachers’ experiences by means of the topics
that students typically struggle with.

Contents of the Bridging Course

Students from many different nationalities, both from within and outside Europe,
join the CE programme, leading to a wide variety of pre-knowledge levels.
Accounting for each of these is beyond the scope of this research. The
mathematical level required of students is determined based on the level expected
for Dutch high school mathematics (Wiskunde B) or the equivalent. Considered
were then the mathematics competencies and learning goals that the Dutch
curriculum imposes students to have achieved by the end of high school for their
final national exam. In doing so, we also considered our own experiences with
teaching mathematics at secondary school. This proved to be a valuable tool in
determining which of the learning goals, that are expected to have been achieved
and mastered, students typically struggle with.

According to SLO (n.d.), by the end of high school students must have mastered
skills across five different domains, A through E. Table 2 offers an overview of
relevant (parts of) domains A through E.

The candidate:

A: Skills e masters mathematical thinking activities including modelling,
algebraising, ordering, structuring, analytical thinking, problem
solving, manipulating formulas, abstracting, logical reasoning
and proving.
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B: Functions,
graphs  and
equations

Formulas and functions: can interpret and edit formulas and draw
a graph in a coordinate system for a relationship between two
variables

Standard functions: can draw and recognise graphs of the
following standard functions: power functions with rational
exponents, exponential functions, logarithmic functions,
trigonometric functions and the absolute value function and can
name and use the characteristic properties of these different types
of functions.

Inverse: can conceptually handle, draw up and use the inverse of
a function.

Equations and inequalities: can solve equations, inequalities and
systems of two linear equations and interpret the solutions.

D:
Goniometric
functions

can draw up and edit formulas for periodic phenomena, draw the
associated graphs, solve equations and use periodicity with
insight.

Table 2: Overview of relevant domains for the Dutch high school curriculum.

The subject Calculus 1A is taught over the course of four weeks, during which
the global topics of ‘Vectors’, ‘Limits’, ‘Differentiation’ and ‘Multivariate
Analysis’ are discussed. This is done according to the learning goals listed in

Table 3.

After completing this course, the student is able to:

Work with vectors and elementary properties of functions, especially with the rules
of differentiability

e apply elementary vector operations

calculate dot product and cross product

determine equations of lines and planes in space

apply elementary properties of functions

calculate derivatives using differentation rules and the derivatives of
elementary functions

Work with limits and the definitions of continuity and differentiability and
applications, for functions of one variable

calculate limits

state and apply the definition of (left, right) continuity

work with limits involving infinity

state and apply the definition of differentiability

calculate and apply linear approximations and differentials
calculate the absolute extreme values on a closed bounded interval
apply I’Hopital’s rule to indeterminate forms of limits
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Investigate functions in two variables

plot graphs and contour lines

investigate continuity and differentiability
calculate partial derivatives

calculate the tangent plane and linearisation

Table 3: Overview of the learning goals of Calculus 1A for Civil Engineering.

These learning goals are tested at the end of the course through an exam
comprising final and open answer questions. These questions challenge the
students to portray mastery of all learning goals as well as of mathematical
reasoning.

Domains A through E (see Table 2) match the contents and end goals of Calculus
1A (see Table 3). Students, however, struggle still due to a lack in fundamentals:
experience shows that students are under the impression that their algebraic skills
are a solid basis they can rely on, and discover, while following Calculus 1A, that
this is not the case. This falls in line with our experiences: in high school students
often struggle with the introduction of topics such as fractions, decimals or
percentages and proceed to build their mathematical knowledge upon unstable
fundamentals. It is precisely for this reason that the Bridging Course also contains
such topics, as can be seen from Table 4.

1: Numbers Fractions, Decimals, Ratios/Percents

2: Functions Definition, Linear functions, Quadratic functions, Cubic
functions, Root functions, Exponential functions,
Logarithmic functions, Absolute value functions, One-
to-One and inverse functions

3: Trigonometry Degrees and radians, Graphs, Unit circle, Right triangle,
Trigonometric equalities, Double angle formulas,
Inverse functions

Table 4: Overview of the subtopics for each main topic of the Bridging Course.

Topic 1 (see Table 4) has been designed to support students whose algebraic skills
need revision or improvement. The subtopics constitute the basis upon which
students revise topics 2 and 3. They ensure, therefore, a review of domain A (see
Table 2). In this topic, students must perform a series of calculations (addition,
subtraction, multiplication and division) and comparisons with fractions,
decimals and ratios. This offers them the opportunity to discover potential issues
in their algebraic skills and to make amends for those before the start of Calculus
1A. This benefits their ability to follow along with calculations of the lecturer and
their own algebraic precision.

Topic 2 in Table 4, offers a revision of topics from domain B (see Table 2) and
equips the students with a complete overview of the skills (such as graphing,
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equating and solving) and of the standard functions and relative graphs and
characteristics (such as asymptotes) necessary to complete Calculus 1A. Once the
cases for one variable are clear in the students’ minds, applying differential
calculus to them and moving on to functions of two variables feels like a smaller
step. In addition, the topics of one-to-one and inverse functions have been added
to slowly introduce students to the mathematical correct definition of an inverse
function, which is not necessarily given at high school level: this ensures that
damaging preconceptions are taken care of. This topic also allows students to
become familiar with standard graphs without the aid of a graphic calculator as
this tool may have been allowed in high school.

Topic 3 (see Table 4) is directly derived from domain D in Table 2 and aims to
support students in handling trigonometric functions and equations, as these
return very often throughout their study of differential calculus.

The questions that make up the Bridging Course are closed answer type questions
(partly due to limitations we faced when using CANVAS): multiple choice,
true/false and drag and drop. All answers provided to students to choose from
have been designed based on common misconceptions reported in literature and
on our teaching experience in secondary schools.

Implementation and interviews

The Bridging Course in its current iteration was administered to CE students to
work through in September of 2023, before the start of Calculus 1A. During a
four hours session, students were started off on the Bridging Course in the
presence of a lecturer and teaching assistant and were given a full week to
complete it at their own pace.

To valuate the impact of the Bridging Course on students’ performance,
interviews were held with a panel of four second-year students, who all repeated
Calculus 1A in 2023. As these students experienced both the Bridging Course
and the workshop in 2022, they could elaborate on the qualities of either
approach: this allowed to (partly) qualitatively, evaluate the improvements
brought about by the Bridging Course.

RESULTS AND DISCUSSION

Below, the comparison of the Bridging Course with the previous years’ attempts
In mathematics transition as well as the implementation of the Bridging Course
will be presented and discussed through the results of the held interviews.

The Bridging Course was well received by the students, who showed great
appreciation for it. In particular, students indicated that this course was a great
Improvement compared to the workshop of 2022. The four interviewed students
felt that the Bridging Course caters to the individual student through a unique
experience. Students shared that, while useful, the workshop suffered from the
same issues as the lectures: not everybody within the classroom was on the same

98



level, students did not feel comfortable asking questions and, in some cases, also
felt left behind and that their questions would be judged to be trivial or
unintelligent. This was the case for a student who realised that they had not
mastered how to multiply and divide fractions: this student thought they could
rely on this being part of their skillset and felt ashamed to admit to the lecturer
that this was not the case. Following along with calculations and steps had
become a challenge, so this student could not make up for this gap in knowledge
and ended up not passing the course: their final mark in 2022 was about 3.0 out
of 10. The Bridging Course suited this student’s need much better, providing
them with ample exercise for the topics they struggled with. This student saw
incredible improvement. In 2023, they passed Calculus 1A on their first attempt
with around a 6.5: a difference of over 3.5 points compared to 2022. The other
three also reported passing the exam on the first try with an improvement of about
3.0 points upon their grade in 2022 and thought that the Bridging Course had
played a role in this by helping them move forward in their learning. One student
explained that the goal of the workshop in 2022 felt aimed at testing their pre-
knowledge, rather than teaching them. This demotivated them greatly, as it made
them insecure about their knowledge. They could appreciate that the Bridging
Course had a clear focus on having students learn from their mistakes.

Two students indicated that they experienced the size of the Bridging Course to
be daunting: for each of the 19 subtopics up to four different skills could be tested.
This gave the impression that the course could take up a considerable amount of
time. Students, however, admitted to later finding that the course could be worked
through with relative ease as no open questions are included in the course. This
also initially created a false sense of security, as all four students indicated that
they thought they would easily be able to solve many of the questions, only to be
surprised by their knowledge gaps and at the trickiness that the course managed
to maintain. Students appreciated that the Bridging Course could provide them
with a reliable indication of which topics and skills needed extra revision and
liked that the length of the course would vary based on their own performance:
the experience felt like one tailored to them. Students, however, also indicated
that they only partially appreciated the kick-off session of the Bridging Course:
three recognised that, while this session was a great starting point to immediately
resolve any accessibility or technical issues with the tool, it also meant that
students faced the judgement of their peers. As contact hours are clearly still
necessary, in 2024 the session could be made non-compulsory and be aided by
the addition of office hours.

This is a preliminary study that faces limitations. The sample size of interviewed
students is limited: while the feedback was quite positive, we are currently
working on painting a full picture of the benefits and disadvantages of the
Bridging Course. This will be topic for further research, where the results from
students both for the Bridging Course and Calculus 1A will be quantitively
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evaluated, providing further insight into the impact of the course. However, one
may already take into consideration that the Calculus 1A exam this year achieved
about a 75% passing rate (a clear improvement with respect to previous years).
Additionally, during the design phase attention was paid into how teachers can
be supported with the information gathered during the Bridging Course. The
collection of this data culminated in a heatmap for the teachers to use: from here
the teachers could conclude on which (groups of) subjects (groups of) students
scored poorly. The design and results of the teacher support will be discussed in
future publications.
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This study applies Action-Process-Object-Schema (APQOS) theory in a second research
cycle investigating how an approach based on the explicit consideration of slope in
three dimensions and local linearity contributes to students’ learning of the differential
calculus of two-variable functions. We compare the problem-solving tendency of
students from two sections that were taught differently. We find that students’
conceptualizations of slope were different in the two sections and that their
understanding of slope was reflected in their problem-solving and the justifications of
the relations that they constructed between different basic notions of the differential
calculus. Overall, we show that the students who based their constructions on slope
and local linearity obtained a deeper understanding of the differential calculus.

Keywords: APOS, functions of two variables, slope, differential calculus, multivariable
calculus.

INTRODUCTION

Slope is a basic notion that is commonly studied for the first time in the middle school
curriculum, then is revisited in secondary school, in courses such as algebra,
trigonometry, and pre-calculus, before being revisited again in the context of the
calculus of one-variable functions (Nagle et al., 2019). So, it is reasonable to attempt
to base students’ understanding of multivariable calculus on the notion of slope.
However, students can show difficulty generalizing the notion of slope from two to
three dimensions (Moore-Russo et al., 2011; Martinez-Planell et al., 2015). So,
attempts to build the differential calculus of two-variable functions based on the notion
of slope require the explicit consideration of slopes in three dimensions when teaching
the course (McGee & Moore-Russo, 2015). This is done in this study, in which
classroom instruction of an “activity section” started with an explicit discussion of
slope in three dimensions (3D), then slopes were used to have students construct a
notion of vertical change on a plane (dz =dz, + dz,; see Figure 1) which
subsequently served as a basis from which to develop other ideas of the differential
calculus of two-variable functions, including the tangent plane, directional derivatives,
and the total differential. In the study, we investigate how this approach to
multivariable calculus affects students’ ways of thinking about slope and, more
importantly, how students who used this approach tended to establish more relations
between different notions of the differential calculus of two-variable functions when
problem-solving justifying the relations in terms of slope, in comparison with students
that did not use this approach.
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There is an increasing number of studies dedicated to the didactics of multivariable
differential calculus (e.g., Borji et al., 2023a, 2023b; Harel, 2021; McGee & Moore-
Russo, 2015; Martinez-Planell et al., 2015, 2017; Lankeit & Biehler, 2019; Tall, 1992;
Thompson et al., 2006; Trigueros et al., 2018; Weber, 2015). But there is still much to
learn, particularly as it pertains to how can one best help students to interrelate the
different notions of the differential calculus of two-variable functions.

THEORETICAL FRAMEWORK

We use the Action-Process-Object-Schema theory (APOS). For more details, see
Arnon et al. (2014). In APOS, an Action is a transformation of a previously constructed
mathematical object that the individual perceives as external. An Action may appear
as a rigid application of an explicitly available or memorized fact or procedure. When
an Action is repeated, and the student reflects on the Action, it might be interiorized
into a Process. A Process is perceived as internal. A student with a Process conception
will show characteristics like justifying the Process, discussing it in general terms,
thinking of it as independent of representation, and generating dynamical imagery of
the Process. A Process may be reversed or coordinated with other Processes to form
new Processes. When an individual is able to think of a Process as an entity in itself
and can apply or imagine applying actions on this entity, then the Process has been
encapsulated into an Object. The important thing about an Object is being able to do
Actions on a (previously encapsulated) Process. A Schema is a coherent collection of
Actions, Processes, Objects, and other previously constructed Schemas that are
interrelated in such a way that the individual can determine if it applies to a particular
problem situation. Although the complexity of the differential calculus of two-variable
functions suggests the use of Schemas to model student understanding, in this report
we focus on slope and its role in establishing connections between different component
structures of the differential calculus of two-variable functions. We will not need to
use Schemas to model this.

Another important idea in APOS is that of a genetic decomposition (GD). This is a
model of constructions a student could do in order to understand a particular
mathematical notion. The GD is expressed in terms of the structures (Action, Process,
Object, Schema) and mechanisms (interiorization, coordination, reversal,
encapsulation, de-encapsulation, etc.) of the theory. A GD is not unique and is not
meant to be the best way a student may come to understand a notion. It is only a
hypothesis that may be improved by research results. After proposing a GD, classroom
activities are designed to help students do the proposed constructions. They are class-
tested, and data is obtained from students with an instrument based on the GD. The
obtained data can suggest improvements to the GD and the activities. The new GD and
activities may be tested in further cycles of research.

Reflection is the key ingredient allowing students to go beyond an Action conception.
To foment reflection, in APOS one typically uses the ACE pedagogical strategy. This
means that the specially designed activities are worked in collaborative groups of three
or four students, there are general class discussions, and exercises for the home.
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GENETIC DECOMPOSITION (GD)

We adapt some ideas of Tall (1992) to base the development of the differential calculus
of two-variable function on the notion of slope and local linearity. The construction is
suggested by Figure 1 and is developed in much detail in a GD given by Martinez-
Planell et al. (2017), and for the total differential, in Trigueros et al. (2018). We must
omit all details for reasons of space. Essentially, we start by the explicit consideration
of slope m in three dimensions (3D). Since we treat a surface as locally linear, we start
by considering planes and use the slopes in the x and y directions, m, and m,, to
construct Processes of vertical change on a plane in the x and y directions, dz,, = m,.dx
and dz, = m,, dy respectively, and coordinate them to obtain a Process of total vertical
change on a plane dz = dz, + dz, . From here, the point-slopes equation of a plane
follows immediately and if the plane happens to be the tangent plane, we also obtain
its equation, were the slopes in the x and y directions are now the partial derivatives.
As Figure 1 suggests, the notions of total differential and directional derivative can also
be obtained based on this idea.
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Figure 1. Diagram and figures suggesting the main constructions of the Differential
Calculus (m is slope).

FIRST RESEARCH CYCLE AND METHODOLOGY

This study is a result of a second research cycle investigating students’ understanding
of the differential calculus of two-variable functions. The first research cycle and the
resulting GD are described in Martinez-Planell et al. (2015, 2017) and in Trigueros et
al. (2018). The results of the first cycle showed that students seemed to have an Action
conception of the main ideas of the differential calculus; many students did not
construct slope in 3D and they seemed constrained to the rigid application of
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memorized formulas which they could not justify geometrically. The problem is that
visualization is not possible when working at the Action level. Only one student (out
of 26) constructed a Process of directional derivative, and none constructed a Process
of total differential. The data suggested that the notions of tangent plane, total
differential, and function remained isolated in the minds of most students.

After that first cycle, the GD was revised and the activity sets were redesigned in order
to better help students do the constructions proposed in the GD and use slope and the
tangent plane to interrelate partial and directional derivatives, the point-slopes equation
of a plane, and the total differential in different representations as described before.
The GD was now more detailed, thus introducing many changes in the activities. The
activities for the differential calculus and other areas can be downloaded in the link
https://www.researchgate.net/publication/373990320 Activities for Multivariable C
alculus.

In this second cycle, we compared students’ inferred mental constructions in an activity
section that used the newly improved activity sets and the ACE pedagogical strategy,
and a regular section that followed very closely the textbook (Stewart, 2012), used
problems from the textbook, and was lecture-based. Having a regular section allowed
us to recreate conditions similar to those of the first research cycle so that the types of
constructions students in the regular section make can serve as a baseline with which
to compare the constructions of the students in the activity section. It also enables us
to verify that the results of the first research cycle are reproduced with those of the
regular section. We underscore that this is a qualitative rather than a quantitative study
in which we look for the general tendency of students of the regular and activity
sections when constructing different structures (Actions, Processes, Objects) in their
problem-solving.

Each professor chose 11 students so that three were over-average, five average, and
three under-average according to the professor’s criteria. This was done in order to be
able to observe as many different types of constructions as possible. The students were
comparable in the sense that they took the previous single-variable calculus course with
the same professor (of the regular section), and it was verified that they had comparable
grades in that course. Both professors had ten years of experience teaching the course.
Semi-structured interviews took place after the semester was over; each interview had
two parts, which were held on separate days, and each part lasted approximately one
hour. The interviews were audio and video recorded, transcribed, and translated into
English. The data analysis compared the structures (Action, Process, Object) that
students gave evidence of having constructed with those proposed in the GD, and also
took note of unconjectured constructions. The analysis was done individually by the
researchers and then discussed as a group until a consensus was reached.

The interview instrument had a total of 20 questions in its two parts. For the purpose
of this article and for lack of space, we only show the four questions below.
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2. a. In the plane given below, find the slope of the line in bold [Figure 2 left].

6. The plane in the figure below [Figure 2 right] is tangent to the graph of a
differentiable function z = f(x, y) at the given point.
a. What can you say about the change in the value of the function if x increases 0.02
units and y decreases 0.02 units?
b. Find the differential of f at the point (1, 2), df (1,2). If it is not possible, explain
why.
d. Use the graph of the given tangent plane to find D 1,1 (1,2).

RESULTS

As could be expected, classroom activities that emphasize a geometric interpretation
of slope and the notions of differential calculus had an effect on the students’
conceptualizations of slope (Moore-Russo et al., 2011; Nagle et al., 2019) with most
students in the activity section (10 of 11) giving evidence of a geometric ratio
conceptualization of slope while a majority of students in the regular section (7 of 11)
showed an arithmetic ratio conceptualization. Of course, as argued in Nagle et al.
(2019), students with a Process conception of slope can exhibit either conceptualization
as needed in a problem situation. The following two examples show the difference
between the geometric and arithmetic ratio conceptualizations of slope. Student Al is
from the activity section and R2 is from the regular section.

Al: The slope of this line will be this vertical change which is 5 minus 2 and it’s
3 umm over this horizontal change which is umm from 1 to 2 so the

horizontal change is 1. The slope is% = 3.

Student Al shows a geometric ratio conceptualization of slope in 3D while, in the
following example R2 shows an arithmetic ratio conceptualization.

Figure 2. Figures for questions 2a and 6a, 6b, 6d, respectively.

R2: It’s a line in 3D umm | don’t know how to compute the slope of a line in 3D
because we have three variables x, y,and zin 3D... The y coordinate is fixed
at 2 in both points ... So I ignore y in my computation, and | use the formula

Z2—21

X2—X1
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Later, when asked about the slope in the y direction:

R2: Okay, I have a line in 3D which is in the y direction ... | see the x coordinate
is fixed as 2 in two points so | ignore it in my computations, and maybe the
formula for slope in this case can be - . Iin part 2a [the x direction] the

1

y coordinate was fixed, and in part 20 [the y dlrectlon] the x coordinate was
fixed, but I am thinking how can we find the slope of a line in 3D if all the
three coordinates x, y, and z change from first point to the second point. |
have no idea for finding the slope of such points because in these cases the

formulas Z2=2% and Z2=* don’t work.
X2—X1 Y2=V1
Overall, R2 seems to be more dependent on formulas. The statement of R2, “I have no
idea for finding the slope of such points because in these cases the formulas 22— and

Xo—X1

2” il don’t work”, is an example of “the two change problem,” observed early by
1

Yeruschalmy (1997) and explored and named as such by Weber (2015). It anticipates
some of the challenges students face if learning directional derivatives by using an
entirely algebraic perspective.

Some students in the Regular section showed a geometric ratio conceptualization of
slope, like R1.

R1: The line in bold goes 3 units up and moves 1 unit in the x axis so its slope is
3

1

Overall, as shown in Table 1, all 11 students in the activity section showed their
understanding of slopes in 3D by computing the slopes in the x and y directions, while
five of the 11 students in the regular section were also able to compute slopes in 3D,
something which, as observed by Moore-Russo et al. (2011) and as seen in the first
research cycle (Martinez-Planell et al., 2015), is not generalized on their own by some
students. Table 1 also shows relations established between the notions of tangent plane
and function (TP-F; problem 6a), total differential (TP-TD; problem 6b), and
directional derivative (TP-DD; problem 6d) when problem-solving.

Students
showing Slope in 3D TP-F TP-TD TP-DD
construction
Activity section 11 8 8 9
Regular section 5 2 1 3

Table 1. TP=tangent plane, F=function, TD=total differential, DD=directional deriv.

We now consider some examples of these relations. In question 6a, students are given
a graphical representation of the tangent plane in order to approximate a change in
function values. Student A1l uses slope in his argument, interrelating different notions
of differential calculus. He interprets the tangent plane in terms of the total differential,
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showing awareness that the total differential at the point will give vertical change on
the tangent plane as a function of the horizontal change (dx, dy). Further, he relates
the partial derivatives to the slopes of the plane in the x and y directions and ends up
by relating total differential to function in order to produce the requested
approximation.

Al: | know df = f,dx + f,dy. Here we have dx = 0.02 and dy = —0.02. |
have to find the values of f, and £, at the point (1,2,0). Since it is a tangent
line to the function f at the point (1,2,0) so f, is m, and f, is m,. Based on
the figure m, is 1 over umm 2 minus 1 which is 1 so it will be 1, som, is 1,
and m,, is 3 units to the up over 3 minus 2 which is 1 umm it will be 3 over
1 which is 3, so m,, is 3. The change in the value of the function is 0.02 times
1 plus —0.02 times 3 and umm the answer is —0.04.

Like Al, eight of the 11 students in the activity section also used slope to relate tangent
plane and function in question 6a, with some also relating these notions with the total
differential. On the other hand, only two of the 11 students in the regular section could
do the problem, and none used slopes. Consider R1:

R1: | think this is like Question 2 but here it’s tangent plane to the function f. |
can find the change in the z coordinate on the plane. Looking at the plane we
see when x increases 1 unit umm from 1 to 2 then the z coordinate increases

1 unit to the up umm now if x increases 0.02 units we have the proportion

— =—so it will be % which is 0.02. Based on the figure if y increases

from 2 to 3 which is 1 unit then the z of the plane increases as 3 units, so for
Ay = —0.02 because y decreases it’s negative, so we have the proportion

_01_02 = é and from this we have Az = _0'012X3 which is —0.06. So the final

change in z is umm 0.02 minus 0.06 which is —0.04. It’s the change of the
value of the z of the plane.

Note that R1 relates the tangent plane with the function, showing awareness that one
can be used to locally approximate the other. She does this without explicitly recurring
to slopes. Instead, she uses proportions.

Question 6b gave students the graph of the tangent plane at a point and asked for the
total differential at the point. As shown in the previous problem, Al had constructed a
relation between function, total differential, and tangent plane.

Al: It’s df (1,2) equal to 1 times dx plus 3 times dy

Like A1, eight of the 11 students in the activity section could relate tangent plane with
total differential. The only student of the regular section to do so was R1.

R1: | know the formula of the differential of f is df = f,dx + f,dy and for the
point (1,2) it will be df (1,2) = £,(1,2)dx + f,(1,2)dy. But | don’t know
how to find £,(1,2) and f£,,(1,2).

Interviewer: Use the figure of the tangent plane.
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R1: Since it’s the tangent plane to the function f at the point (1,2) umm it seems
that | can find the derivatives based on the figure. In Question 2 | found the

slope in the x and y direction, now the slope in the x direction is % which is

1, and the slope in the y direction is % which is 3. If | consider f, equal to 1
and f, equal to 3 then the differential will be umm df(1,2) = 1d, + 3d,,.

Note that with a hint from the interviewer, R1 was able to find the total differentiall,
perhaps as an Action, a memorized formula, since she did not justify it on her own. In
doing so, she showed the need to construct slope as an Object she can flexibly use to
relate the graphical representation of tangent plane and partial derivatives. The most
common response of students in the regular section, as those in the first research cycle,
was similar to that given by R2:

R2: I don’t know how to find df (1,2). | don’t know what the differential means
on the graph umm neither know its formula.

Question 6d gave students the same graph of a tangent plane and this time asked for a
directional derivative. Note that the notion of slope is central to A1’s argument.

Al: It’s the directional derivative. The direction vector is (1,1) so the horizontal
change is /12 + 12 which is v2. The vertical change is 1 times 1 plus 1 times
3 and umm is 4. So the slope or umm | mean the directional derivative is 4

over /2.

Student Al seems to think of a directional derivative as a slope, as proposed in the GD.
Like A1, 9 of the 11 students in the activity section related tangent plane to directional
derivative (eight of them used slope). In the regular section, three of the 11 students
constructed that relation; they all used a formula based on the gradient vector, like R1.
This formula seems to have been used as an Action, a memorized procedure, since
geometric understanding of the formula would require a Process of vertical change on
a plane, which R1 did not give evidence of having constructed.

R1: It’s the directional derivative of f at the point (1, 2) in the direction of vector.
The magnitude of the vector is ~1+1 which is /2. | know the directional
derivative Df,, (x,y) Wwhere (a,b) is a unit vector, is equal to
a-f (x,y)+b-f (x,y), so the directional derivative is Df,,(L2)= 1x% +
3x % which is +-

DISCUSSION AND CONCLUSIONS

This study examines a second research cycle investigating students’ understanding of
the differential calculus of two-variable functions. The results of the first cycle
suggested that the notions of tangent plane, total differential, and function remained
isolated in the minds of most students. The results of the second cycle now show that
it is possible to help students interrelate these notions based on the slope and local
linearity approach. That is, by having students work collaboratively and discuss in class
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activities that use slope as a base to construct vertical change on a plane, and from
there, exploring and interrelating the notions of tangent plane, total differential,
function, and directional derivative in different representations. A contribution of this
study is showing that students can succeed in this construction. The approach to the
differential calculus of two-variable functions, based on the geometric understanding
of slope and vertical change on a plane, is another contribution of this study.

The study’s results suggest that students can obtain a deeper understanding of the
differential calculus with this approach. In question 6a, we saw that slope can play a
role in fomenting the interrelation of tangent plane, total differential, and function,
notions which on the first research cycle seemed to remain isolated in the minds of
most students. The results dealing with question 6b suggest that the construction of
slope and vertical change on a plane, helps students relate tangent plane and total
differential, thus showing an improvement on the results of the first research cycle
(Trigueros et al., 2018), where no student showed to construct total differential as a
Process. Directional derivative, as seen in question 6d, is another notion that students
can relate to tangent plane, giving geometric meaning to the usual formula that students
mostly tend to memorize, and thus understand as an Action conception. This is
suggested by the study (Borji et al., 2023b), which shows results about directional
derivative that improved from the first research cycle, where only one of 26 students
constructed a Process of directional derivative. All these differential calculus ideas are
held together by the notions of slope and the derived vertical change on a plane, as
suggested by the genetic decomposition and the results of the study.

The interview instrument in its entirety involves several components of the differential
calculus of two-variable functions, including slope, function, vertical change on a
plane, point-slopes equation of a plane, tangent plane, total differential, partial
derivative, directional derivative, and gradient. Thus, the complexity of the
corresponding Schema requires an investigation that takes advantage of tools like a GD
stated in terms of the schema components and relations between components, the types
of relations between Schema components, and the triad of stages of Schema
development (Arnon et al., 2014). This is future work.
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The notion of confrontation is conceived theoretically and methodologically as a tool
that allows to describe a possible way in which historical subjects did mathematics,
through the idea of building knowledge against previous knowledge. However, this
paper presents the notion of confrontation as a tool for designing a sequence of tasks
in complex analysis that allow to create a scenario similar to the one identified in a
study of an original work of Cauchy. Through this sequence of tasks, it is intended to
characterise how the different ways in which Cauchy did mathematics are nuanced in
contemporary scenarios dealing with complex analysis.

Keywords: Epistemology philosophy and history in university mathematics education,
Teachers’ and students’ practices at university level, Complex Analysis,
Confrontation, Task design.

INTRODUCTION

The theory of complex functions, also known as complex analysis, is a branch of
mathematics that permeates several scientific disciplines. For example, according to
Conway (2012), the theory of complex functions is the ancestor of other areas of pure
mathematics such as homotopy theory and the theory of manifolds, while according to
Nahin (1998), some concepts of complex analysis allow to explain some phenomena
in physics and in electrical engineering.

The fact that complex analysis is present in a variety of scientific disciplines means
that its introduction into the university education system is not without its own
complications. Authors such as Garcia and Ross (2017) report that one of the
difficulties with complex analysis courses is the level of rigour required to prove
theorems within this branch of mathematics. According to the authors, mathematical
proofs can act as an incentive for undergraduate mathematics students, but can also act
as an obstacle for those who are more interested in the applications of complex analysis.

In mathematics education there have been various efforts to understand and resolve
some conflicts in the contemporary school scenario of complex analysis through
different types of studies. For example, works such as Dittman, et al. (2016) and
D’azevedo-Breda and Dos Santos (2021) have introduced digital technologies with the
aim of making the concept of complex-valued functions more accessible to a group of
teachers and students respectively. With the aim of providing a geometric meaning to
algebraic expressions, there have been studies on how professional mathematicians and
undergraduate students work with the concept of complex integrals (Hanke, 2020; Soto
and Oehrtman, 2022) and the concept of complex differentiation (Troup, et al., 2017;
Soto-Johnson and Hancock, 2019). There are studies in the discipline that have
explored different ways of working with the concept of complex numbers
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(Dananhower, 2000; Panaoura, et al., 2006; Nemirovsky, et al., 2012), and there are
even research studies in mathematics education that have analysed original
mathematical works (Cantoral and Farfan, 2004; Pifia-Aguirre and Farfan, 2022;
Hanke, 2022; Pifia-Aguirre and Farfan, 2023a), with the aim of recovering different
ways in which historical subjects did mathematics that may have been overlooked in
the configuration of school discourses on complex analysis.

As part of an ongoing Ph.D. research aimed at contributing to the configuration of a
reference epistemological model (Gascon, 2014) of complex analysis, informed by
historical evidence and supported and enriched by empirical data, in this paper we take
as a starting point the results of a historical-epistemological study (Pifia-Aguirre and
Farfan, 2023a) to present a set of tasks configured with the aim of answering the
question: how does a community of undergraduate mathematics students make use of
different ways in which historical subjects did mathematics in complex analysis? We
hope that by understanding how these different ways of doing mathematics are nuanced
in contemporary school scenarios of complex analysis, we can enrich the theoretical
results reported in Pifia-Aguirre and Farfan (2023a), which describe a way in which
complex analysis can be attended through the gradual incorporation of figures, in
addition to the use of purely algebraic arguments as a means of mathematical
justification.

THEORETICAL ASPECTS

Pifia-Aguirre and Farfan (2023a) assume that school mathematical knowledge is the
result of a process of didactic transposition (Boch and Gascon, 2006), which transforms
mathematical knowledge by detaching it from its scenarios of origin and transforming
it into teachable knowledge. Therefore, Pifia-Aguirre and Farfan analysed original
works related to complex analysis with the aim of recovering different ways in which
historical subjects did mathematics that might have been overlooked by acts of didactic
transposition.

One of the main results of the study by Pifia-Aguirre and Farfan (2023a) is the
conformation of three categories that describe how historical subjects did mathematics
in what we now call complex analysis. With the aim of revealing what kind of didactic
phenomena are related to the different ways in which historical subjects did
mathematics in complex analysis, this paper presents a series of tasks that
hypothetically allow two of these three categories to be brought into play.

In particular, Pifia-Aguirre and Farfan (2023a) report that in the Mémoire sur les
intégrals définies prises entre des limites imaginaires (1825), Cauchy deals with
concepts related to complex integration through an interplay between algebraic
expressions (such as equations or functional relations) and the use of figures (conceived
as two-dimensional drawings) through the following two categories.

The first category, called geometric formulations as means of representation, refers to
the fact that Cauchy did mathematics relying only on the use of algebraic expressions,
without the need to incorporate any explicit use of figures. This implies that one way

113



in which Cauchy did mathematics is characterised by the use of algebraic symbolism
as the only means of mathematical justification, and therefore, it is conjectured that in
this category the use of figures could be associated (at most) as a means of representing
algebraic expressions.

The second category, called geometric formulations as means of construction, alludes
to the fact that Cauchy did mathematics by relying on algebraic symbolism and by
incorporating figures accompanied by their counterpart via algebraic expressions as
means of mathematical justification. Apart from the fact that in this second category
figures are indispensable for the act of doing mathematics, these figures cannot exist
without their analogous representation by algebraic expressions.

It is worth noting that Pifia-Aguirre and Farfan (2023a) use the notion of confrontation
to show that the transition from the first to the second category occurred because
Cauchy had to incorporate the use of figures (via narrative expressions) in addition to
his purely algebraic arguments to support his mathematical procedure. More generally,
the notion of confrontation is based on the idea of conceiving that historical subjects
had to confront the way they did mathematics in complex analysis in order to develop
it further, since their successful ways of doing mathematics eventually had to be
complemented by other ways of doing mathematics because they could not convey
their mathematical ideas. For a further explanation of how this idea comes into play in
the analysis of original works, we recommend reading Pifia-Aguirre and Farfan
(2023a).

Although the notion of confrontation has points in common with Brousseau’s (2006)
epistemological obstacles, Pifia-Aguirre and Farfan (2023b) specify that the notion of
confrontation distances itself from epistemological obstacles because it does not rely
on the notion of error. For a more detailed explanation of this difference, we
recommend reading Pifia-Aguirre and Farfan (2023b). In what follows, we will show
how the notion of confrontation comes into play in the elaboration of a set of tasks that
hypothetically allows students to move from the category geometric formulations as
means of representation to the category geometric formulations as means of
construction.

METHODOLOGICAL ASPECTS

The notion of confrontation was conceived to explain a possible way in which
historical subjects did mathematics in what we now call complex analysis. However,
for the purposes of this paper, the notion of confrontation will allow us to design a set
of tasks with the aim that, in order to solve these tasks, a group of undergraduate
mathematics students from a Mexican university will gradually incorporate the use of
figures in addition to the use of purely algebraic arguments. We envision that by
gradually incorporating the use of figures, we can create a scenario similar to the one
identified in Cauchy’s memoir of 1825, in order to understand how students use figures
as a means of mathematical justification.
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The set of tasks presented in this paper consists of three types of tasks. Type I tasks are
configured in order to create a scenario in which the answers to the questions rely solely
on the use of algebraic symbolism as a means of mathematical justification. We
conjecture that if students use figures to solve these types of tasks, they will use them
as a means of representing some algebraic expressions, but the answer to these tasks
will be supported only by algebraic symbolism. These types of tasks are configured
based on the category geometric formulations as means of representation.

Type 1l tasks are designed to show that, in addition to algebraic symbolism, it is
necessary to consider additional means (in this case the use of figures) to address
different concepts in complex analysis. That is, these tasks are designed to make
students confront the idea that algebraic symbolism is the only way to provide an
answer to the tasks. It should be noted that in these types of tasks the need to recognise
that other means of mathematical justification than algebraic symbolism are needed is
not a consequence derived from the fact that algebraic symbolism leads to errors.

Type |11 tasks are structured with the aim of understanding how students relate
algebraic expressions to a particular type of figure (straight-line segments). In contrast
to Type | tasks, answers to Type Il tasks require arguments based on figures. These
types of tasks are based on the category geometric formulations as means of
construction in that they relate specific figures to algebraic expressions.

That is, Type | tasks were designed to show the productive potential of algebraic
symbolism, while Type Il tasks were designed to show that it is necessary to
incorporate the use of figures in order to work further with concepts related to complex
analysis. Finally, the Type |11 tasks were designed with the aim of understanding how
students use figures to answer some of the tasks. In this respect, we hope that the design
will allow students to move through the categories identified in the work of Cauchy
(1825).

THE SEQUENCE OF TASKS

The following seven tasks, which are part of a larger set of tasks, are presented in order
to address the concept of integral comprised between complex numbers by a process
of extension used by Cauchy in his Mémoire sur les intégrals définies prises entre des
limites imaginaires. Although the tasks were designed on the basis of this memoir, it
Is important to note the following. On one hand, the historical awareness of the
participants in the study will not be an explicit objective addressed by the design. On
the other hand, we do not claim that Cauchy gave a meaning to the concept of complex
integral as depicted in the tasks. These tasks will allow us to understand how students
gradually incorporate the use of figures to their algebraic arguments.

Each task is followed by its objectives and the heading of each task indicates the type
of task (I, Il or I1l). If the tasks are of Type I or Il, the type of mathematical activity
that the task is expected to elicit is indicated, whereas if the task is of Type Ill, we also
present some questions that we hope to answer once we have conducted a pilot study.
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1.- Task 1 (Type I)

In 1825, in his Mémoire sur les intégrals définies prises entre des limites imaginaires,
Cauchy gives the following definition for the computation of integrals of real functions
comprised between real numbers.

In order to stablish in general terms the meaning of the notation

X
(D) j £ ()dx

where x,, X denote real limits, and f(x) denotes a function of the variable x, it is
sufficient to consider the definite integral represented by this notation equivalent to the
limit of the sum

(2) (cp = x0)f(x0) + (xz —x1)f (x1) + -+ (X — xXp_1)f (Xn-1)
when the elements
(3) X1 —Xo» X2 = X1y ey X — Xn-1
are getting smaller and smaller.
In contemporary notation, this definition can be rewritten as follows:

X
| G = Jim [0 = x0)f Giod + (2 = x)f ) + =+ (X = 30 ) Con )]

n-1

= rlllj{.lo (k41 — X)) f (xk)
k=0

Use this last expression to compute the value of the integral

5
jxdx
1

if a partition of the interval [1,5] into n equal parts is considered.

Aim of the task: This task will allow us to know how students work with the definition
proposed by Cauchy. In particular, this task is designed with the intention that the
students will notice that the definition proposed by Cauchy makes it possible to
calculate the value of a given real integral through symbolic manipulations involving
the concept of limit and sigma notation.

The type of mathematical activity involved: It involves a uniform partition of the
interval [1,5] by expressions of the form x;, + % = X4+1. 1he calculation of the integral
therefore involves algebraic manipulations in the form of a limit and sigma notation.
2.- Task 2 (Type )

Based on Cauchy’s definition of the concept of integral, obtain a symbolic expression,
in terms of a limit and sigma notation, to address the following integral

116



fX+iY f(z)dZ

x0+iy0

Aim of the task: To find a symbolic expression associated with an integral comprised
between complex numbers.

The type of mathematical activity involved: Students are expected to extend the
expression used in Task 1 to obtain an expression of the form

X+iY

| £ Gz = Jim[Goear = 200 + i = 90U G + i)
x0+iy0 n—eo

This type of mathematical work is based on identifying what is changing in the

symbolic expression used in Task 1, and therefore the type of mathematical activity

that is expected to answer this task is related to algebraic manipulations.

3.- Task 3 (Type I)
How would you use the expression you obtained in Task 2 to obtain the value of the

following integral?
5+5i 5+5i
f zdz = f (x +iy)dz
1 1

+1i +1i

Aim of the task: To unveil the forms of mathematical work that students use for a
particular case of a generalisation.

The type of mathematical activity involved: The limits of integration 1 + 1i and 5 + 5i
are expected to suggest that the variables x, y take values in the interval [1,5]. The
effect of this is that the answer to this task is based on the answer to Task 1, and
therefore it is expected that algebraic manipulations similar to those used in Task 1 will
produce an expression such as the following.

n-1

S+5t 4 4 4 4
j zdz = lim (—+i—)[<1+k—)+i(1+k—>]
1+1i n=e n n n n

This type of mathematical activity is based on the idea that one way to proceed in a
new scenario is to proceed through ways of working that are already known in other
known scenarios.

4.-Task 4 (Type II)

Locate the end points of the following integral on a cartesian plane and draw four
different ways of connecting these points.

5+5i
j zdz
1+1i
Aim of the task: To show that, in contrast to working with integrals in R, there is no

single way to connect the endpoints of a complex integral. In this way, students are
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made aware that they need to consider additional means to algebraic symbolism in
order to address the concept of complex integral.

The type of mathematical activity involved: Students are expected to locate the points
1+ 1iand 5 + 5i in the first quadrant of the Cartesian plane and then to connect them
by various freehand curves.

5.- Task 5 (Type I11)

If you want to calculate the integral of an arbitrary function f(z), using the expression
you obtained in Task 2, over the straight-line segment that connects point 3 + 4i with
point 5 + 1i, how does this line segment relate to the expression in Task 2?

Aim of the task: To identify the type of mathematical work that students use to give
meaning to purely algebraic expressions by means of a specific figure.

Expected mathematical activity: Students are expected to draw the straight-line
segment connecting the points 3 + 4i and 2 + 1i. Do they need to find an algebraic
expression describing the line segment connecting these points? If so, how do they find
this expression? If not, how do they work with the freehand curve?

6.- Task 6 (Type I11)

What is the curve that connects points 1 + 1i and 5 + 5i and is associated with the
expression you obtained in Task 3.

Aim of the task: To identify the integration curve associated with the algebraic
expression obtained in Task 3.

Expected mathematical activity: Students are expected to locate the points 1 + 1i and
5+ 5i. Do they identify that the expression (1 +k %) +1 (1 + k %) Is associated
with a straight-line segment because the real and imaginary parts are the same? do they
describe the curve via an algebraic expression or solely through a figure?

Note that the symbolic expression obtained by integrating f(z) = z over the line
segment connecting the points 1+ 1i and 5+ 5i corresponds to the expected
expression in task 3. In this way, it is not necessary for algebraic symbolism to lead to
errors (thus, the sequence of tasks is framed by the notion of confrontation rather than
by the notion of epistemological obstacle), but it is necessary to incorporate other forms
of mathematical activity (in this case related to the use of figures) that allow working
with the concept of complex integrals.

7.- Task 7 (Type I1I)
If you want to use the expression in Task 2 to calculate the integral

X+iY dz
v[xo+iyo?
through the curve defined by g(t) = (1 —t) +it;t € [0,1], what is the curve

described by this algebraic expression?
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Aim of the task: Unlike the previous tasks, where the integration paths were associated
via a figure, the intent of this task is to identify how students work with the expression
obtained in task 2 when the integration path is given via an algebraic expression.

Expected mathematical activity: Students are expected to recognize that the integration
path begins at 1 + 0i and ends at 0 + 1i. What curve do they conceive that connects
these points? do they draw the curve that they conceive? how do they justify that the
curve they are conceiving is the integration curve? do they identify that the values of
x, and y, of the expression obtained in task 2 belong, respectively, to the real and
imaginary parts of the curve 5?

DISCUSSION AND CONCLUSIONS

Although the seven tasks presented above are part of a larger design, these seven tasks
show that the way in which the concept of complex integral is treated does not start
from the assumption that the complex integral is based on integration paths. In the
sequence of tasks, integration paths come into play as a means of making sense of
purely algebraic expressions, but as Hanke (2022) shows in his review of fifty
textbooks of complex analysis, integration paths are the starting point for defining the
concept of complex integral.

For the purposes of this doctoral research in progress, it is assumed that the introduction
of the concept of complex integrals through integration paths is the result of an act of
didactic transposition, insofar as, according to Gascon (2014), acts of didactic
transposition disrupt mathematical knowledge to the extent that different codes are
configured that dictate the ways of doing and conceiving mathematics in contemporary
teaching and learning scenarios. Gascon therefore suggests that in order to achieve
emancipation from these codes, which he calls dominant epistemological models, it is
necessary to configure epistemological reference models that provide evidence of ways
of doing and conceiving mathematics that are not usually recognised by dominant
epistemological models.

Based on the ideas of Gascdn (2014), it is considered that the categories reported in the
study of Pifa-Aguirre and Farfan (2023a) can be conceived as part of an
epistemological reference model of complex analysis, since these categories allow us
to recognise different ways of doing mathematics that allow us to approach the concept
of complex integral without having to start from integration paths privileged in
complex analysis textbooks.

Furthermore, we acknowledge that the study by Soto and Oehrtman (2022) has some
similarities to our approach in that they present a study in which a group of
undergraduate mathematics students solve a series of tasks related to the concept of
complex integral. However, a key difference in our studies is that Soto and Oehrtman
give students a course prior to their study of the complex integral that allows them to
explore a geometric interpretation associated with the arithmetic of complex numbers.
In contrast, in our study we want to understand how students incorporate the use of
figures into their arguments without prior instruction on how to use them.
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Finally, since the concepts addressed in the task sequence require that the participants
in the study be familiar with algebraic operations of complex numbers and that they be
unfamiliar with the parametrisation of curves, as future work the task sequence will be
applied with a group of undergraduate mathematics students from a Mexican university
who have only taken a course in calculus of a real variable and who have not yet studied
complex analysis. It is hoped that from the students’ responses it will be possible to
identify how the different ways in which Cauchy did mathematics are nuanced in
contemporary complex analysis scenarios.
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Textbooks and YouTube videos are among resources undergraduate students use to
learn mathematics. In this paper, a prominent calculus textbook and two highly viewed
YouTube videos related to the fundamental theorem of calculus-part 1 are analysed
through a multiple case study. For this purpose, the theories of didactic transposition
and praxeological analysis are utilised. The findings indicate that the knowledge to be
taught at university as presented in the textbook emphasizes both the praxis and logos
blocks, with more focus on techniques in exercises. In contrast, the YouTube learning
resources have different purposes, one prioritises contextual tasks for developing the
logos block, while the other focuses on teaching the techniques necessary for
differentiating integrals, in line with the taught knowledge in several universities.

Keywords: didactic transposition, praxeology, YouTube learning resources, textbook
analysis, fundamental theorem of calculus.

INTRODUCTION

Textbooks and YouTube videos are among the learning resources that university
students utilize when studying mathematics (Pepin & Kock, 2021). In contrast to the
long history of mathematics textbooks as supporting teaching and learning materials,
textbook research has a significantly shorter history. However, it has experienced rapid
growth in recent decades, including several studies in the past couple of years in
undergraduate mathematics education (e.g., Gonzalez-Martin, 2021). Regarding
YouTube videos, they are identified as one of the most popular sources university
students use for assistance with their mathematics courses (e.g., Aguilar & Esparza
Puga, 2020). Previous studies have reported that these learning resources are used to
recall certain mathematical concepts (Kanwal, 2020), understand mathematical
concepts or problem-solving processes (Aguilar & Esparza Puga, 2020), and are even
utilized by university students when engaging in challenge-based projects (Pepin &
Kock, 2021). YouTube videos are also among the learning resources suggested by
postgraduate tutors to university students (Grove & Croft, 2019). Despite the
influential role of YouTube videos in the mathematical learning of a large body of
university students, it appears that the content of these videos has not been the primary
focus of past research in mathematics education, and their content has not been
thoroughly analyzed. Over the past year, | have started to examine these learning
resources both individually and in collaboration with my colleagues, using different
theoretical frameworks (e.g., the realization tree from commognition (Radmehr &
Turgut, 2024) and the framework of advanced mathematical thinking—a combination
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of action-process-object-schnema (APQOS) theory and Tall’s three worlds of
mathematics (Radmehr, 2024)). In this study, | am focusing on two components of the
Anthropological Theory of the Didactic (ATD) that are particularly suitable for this
purpose: The theory of didactic transposition and praxeological analysis. It is worth
highlighting that this appears to be the first attempt to use these two components of
ATD for analyzing the content of YouTube videos in mathematics education.
Therefore, this study could also contribute to the exploration of how ATD could serve
as a framework in mathematics education studies. The mathematical knowledge chosen
for this study is the first part of the fundamental theorem of calculus (FTC1), a core
theorem in calculus that its importance “hardly needs justification” (Swidan & Fried,
2021, p. 1). The following research question is considered in this study, reflecting on
the aforementioned components of the ATD: What transpositions have been made on
the FTCL1 during the didactic transposition from knowledge to be taught at university
to the taught knowledge in YouTube learning resources?

THE THEORY OF DIDACTIC TRANSPOSITION

The theory of didactic transposition describes how a body of knowledge is transposed
from the instance it is created by a scholar to the point at which it is taught and learned
in an educational institution (Chevallard & Bosch, 2020). This theory goes beyond
what happens in a classroom or lecture, and in empirical studies, calls for the
incorporation of data from beyond the confines of these learning environments
(Stremskag & Chevallard, 2022). In more detail, the ATD postulates that what is taught
in schools and universities originates from scholarly knowledge-the knowledge
developed by mathematicians, in our case, at universities or other scholarly institutions.
Furthermore, when a body of knowledge is to be transposed from where it is originated
to another institution, certain adaptations ‘“‘should be carried out to rebuild an
appropriate environment with activities aimed at making this knowledge ‘teachable’,
meaningful and useful” (Chevallard & Bosch, 2020, p. 214). Several actors, referred
to as the noosphere, “those who ‘think’ about teaching”, such as mathematicians,
teachers, lecturers, and curriculum designers, participate in this transpositive work
(Chevallard & Bosch, 2020, p. 214). Their role is to preserve the main elements of the
scholarly knowledge while negotiating, managing, and addressing the demand imposed
by the society on the educational system (Chevallard & Bosch, 2020). The didactic
transposition process is summarized in Figure 1.

Schalarky
ey | Knowledge to be — . L ed/availabl
knowledge T Taught knowledge | ™ | Learm Javsilabia
Mathematiciars and Eaght Teaching irdtimution knowledge
athar _;' wlaps 3 —= "Maeiphere” |:= Q: Sisdents
athar fehe 1

Figure 1: A summary of the didactic transposition process (adapted from Strgmskag &
Chevallard, 2022, p. 120).

When the sub-theory of didactic transposition is used as a lens, researchers investigate
the transposition across the four mentioned instances (Stremskag & Chevallard, 2022):
(a) scholarly mathematical knowledge; (b) the mathematical knowledge to be taught as
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it appears in curricula and textbooks, (c) the mathematical knowledge
teachers/lecturers impart in classrooms/lectures; and (d) the mathematical knowledge
students learn (Stramskag & Chevallard, 2022). In the following, | discuss
praxeological analysis, an important component of the ATD that is often used when
investigating the didactic transposition of a body of mathematical knowledge (e.g.,
Stramskag & Chevallard, 2022). When examining the didactic transposition process,
YouTube channels can be regarded as teaching institutions, and the content of
YouTube learning resources can be seen as taught knowledge. Consequently, these can
be compared to other instances in the didactic transposition process.

PRAXEOLOGICAL ANALYSIS

In ATD, knowledge can be studied using praxeological analysis (Stremskag &
Chevallard, 2022). A praxeology is a model of human activity consisting of a
quadruplet [7/z/6/0]. These components include a specific task (T) to be accomplished,
a corresponding technique (z) enabling task completion, a rationale (6) that provides
an explanation and justification for the technique, and a theory (®) that encompasses
and substantiates the rationale. The first two components [7/z] constitute the praxis
block, often referred to as know-how, while the latter two [0/@] constitute the l0gos
block, which serves to describe, elucidate, and justifies the actions taken (Gonzélez-
Martin, 2021; Strgmskag & Chevallard, 2022). A praxeology, denoted as P, is typically
the result of the work of an institution or a group of institutions, referred to as I. Often,
it originates within another group of institutions, denoted as I*, and undergoes
Institutional transposition to adapt to the conditions and constraints of I. In many
instances, through didactic transposition, 2 becomes a simplified version of P*. For
instance, during this process, certain task types may lose their relevance and certain
elements of the logos block may become implicit or repressed (Stramskag &
Chevallard, 2022). The final point to highlight is that in comparative studies conducted
using the theory of didactic transposition and praxeological analysis, a reference
praxeological model (RPM) is often constructed (e.g., Gonzélez-Martin, 2021). This
serves the dual purpose of distancing the researcher from the institutions under
investigation (Bosch & Gascon, 2006) and elucidating their perspective on the
knowledge at stake (Topphol, 2023). Due to the word restrictions of this paper and the
complexity of the FTC, where a few pages are needed to discuss an RPM, such an RPM
is not presented here. However, my personal perception of this body of knowledge is
in line, not completely the same, with the recent RPM proposed by Topphol (2023).

THE FUNDAMENTAL THEOREM OF CALCULUS

The FTC connects differential and integral calculus. It enables the computation of
integrals using antiderivative instead of relying on the limits of Riemann sums (Stewart
etal., 2021). In many classical calculus textbooks, it is presented in two parts:

Part 1 If f is continuous on [a, b], then the function g defined by g(x) = f;f(t) dt a <

x < b is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x). (Stewart et
al., 2021, p. 400)
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Part 2 If f is continuous on [a, b], then f:f(x) dx = F(b) — F(a) where F is any
antiderivative of f, that is, a function F such that F' = f. (Stewart et al., 2021, p. 403)

Previous studies (e.g., Radmehr & Drake, 2017; Thompson & Silverman, 2008) have
reported that many students face challenges in developing a conceptual understanding
of the FTC, or from an ATD perspective, they struggle in developing the logos block
for this body of mathematical knowledge. For instance, in Radmehr and Drake’s study
(2017), many students could not understand that f is the function that describes the
rate of change of the accumulated area function g(x) and struggled with
comprehending the symbols embedded in the FTC. Previous studies have also offered
several suggestions to enhance the teaching and learning of the FTC, such as
emphasising accumulation functions over the traditional approach of calculating a
number representing the enclosed area over an interval (e.g., Thompson & Silverman,
2008), and integrating digital technology into teaching (e.g., Swidan & Fried, 2021).

METHODOLOGY

This study is conceptualized as a multiple case study with three cases, each presenting
a body of knowledge on FTC1. Case 1 is part of a well-known calculus textbooks used
for teaching calculus in many countries, written by Stewart et al. (2021). For YouTube
learning resources, | searched YouTube using the keyword “fundamental theorem of
calculus” on October 10, 2023, and sorted the results based on view counts. The first
two videos were from a channel entitled, 3BluelBrown with over 5.5 million
subscribers. This YouTube channel was founded by Grant Sanderson who received a
communication award from the American Mathematical Society for his contribution to
mathematics teaching and learning. The first YouTube video serves as an introduction
to a series of videos discussing the main concepts of calculus, rather than specifically
the FTC. Therefore, | decided not to include it in the analysis. The knowledge discussed
in the second video!, considered as Case 2, is dedicated to integration and, more
specifically, the FTC. The knowledge covered in the third video?, considered as Case
3, is from a channel with 1.36 million subscribers, titled patrickJMT. PatrickIMT, the
founder of this YouTube channel, mentioned in a video® on his channel’s homepage
that he holds a master’s degree in mathematics and has taught at several universities
and colleges. He describes his goal as creating “clear and effective videos” for helping
students “to get their homework done” as “some extra supplements”. Due to the word
restriction of this paper, | have exclusively focused on two aspects of didactic
transposition: the knowledge to be taught at university and the taught knowledge in
YouTube learning resources. To achieve this, | used praxeological analysis of the ATD.

FINDINGS
Praxeological analyses of the three cases are discussed below.
Cases 1: Stewart’s calculus textbook (Stewart et al., 2021)

In this case, both the praxis and logos blocks of FTC1 are well unpacked. The FTC is
presented as part of the integrals chapter. In this chapter, before introducing the FTC,
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topics such as the area and distance problems and the definition of definite integral as
a limit of Riemann sums are discussed. The FTC section begins with a brief
introduction, emphasising the significance of the FTC in calculus and providing a short
historical account for it. Then, the accumulation function is introduced to build up
elements in the logos block:

The first part of the Fundamental Theorem deals with functions defined by an equation of
the form g(x) = f;f(t) dt where f is a continuous function on [a,b] and x varies

between a and b. (p. 399)

Further explanations for this function in a plain language is provided and readers are
encouraged to pay close attention to what g depends on:

[...] g depends only on x, which appears as the variable upper limit in the integral. If x is
a fixed number, then the integral fzf(t) dt is a definite number. If we then let x vary, the

number f;f(t) dtalso varies and defines a function of x denoted by g(x). (p. 399)

The authors continue by relating the accumulation function to area and providing a
graphical realization of this function (Figure 2a).

If f happens to be a positive function, then g(x) can be interpreted as the area under the
graph of f from a to x, where x can vary from a to b. (Think of g as the “area so far”
function; see Figure 1 [Figure 2a]). (p. 399)

Figure 2: From left to right Figure 2a to Figure 2d (Stewart et al., 2021, p. 399-402).

Then, an example is provided to help readers develop a better understanding of the
accumulation function by asking them to calculate the value of the accumulation
function g(x) for a number of values and then sketching the graph of g(x).

Example 1 If £ is the function whose graph is shown in Figure 2 [Figure 2b in this paper]
and g(x) = foxf(t) dt, find the values of g(0), g(1), g(2), g(3), g(4), and g(5). Then
sketch a rough graph of g. (p. 399)

In solving the example, the graph of g(x) for each value are drawn which could be
useful for readers to develop their logos block. Then, another example is provided to
prepare readers to be introduced to FTC1. This time an algebraic representation of £ (t),
l.e., f(t) = tisprovided, and g(x) is calculated using a task from the definite integral

. - P b bZ_aZ” .
section, i.e., “Prove that [ "x dx = ——" (p. 396):

If we take f(t) = t and a = 0, then using Exercise 5.2.47, we have g(x) = fzt dt = xz—z
Notice that g'(x) = x, thatis g’ = f. In other words, if g is defined as the integral of f by
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Equation 1 [g(x) = f: f(t) dt], then g turns out to be an antiderivative of f, at least in
this case. And if sketch the derivative of the function g [...] by estimating slopes of
tangents, we get a graph like that of £ [...]. (p. 400)
Afterwards, the authors make an effort to intuitively address the logos block before
presenting the theorem by assuming that f(x) = 0, associating g(x) = f; f(t)dtto
the area under the graph of £, and using the derivative definition to compute g'(x):
... from the definition of a derivative we first observe that, for h > 0, g(x + h) — g(x) is
obtained by subtracting area, so it is the area under the graph of f from x to x + h (the blue

area in Figure 5 [Figure 2c in this paper]). For small h you can see from the figure that this
area is approximately equal to the area of the rectangle with height f(x) and width h:

gCc+h) — g(x) ~ hf ()[] s0 L8 ~ £(x) [..]. (p. 400)

Then, the FTC1 is provided as shown earlier, and the authors provide an explanation
of the theorem in plain language: “In words, it says that the derivative of a finite integral
with respect to the upper limit is the integrand evaluated at the upper limit” (p. 400).
Then, a full proof of the theorem is provided. The proof begins with the calculation of

g(x + h) — g(x), and along the way, two properties of integrals (e.g., “facf(x) dx +

fcb f(x)dx = f; f(x) dx” (p. 393) [1]), the extreme value theorem and the squeeze
theorem are utilized (see p. 401). The authors continue by presenting the FTC1 using
the Leibniz notation for derivative: “:—x faxf(t) dt = f(x)” (p. 401). They point out

that this equation “roughly” says that “if we first integrate f and then differentiate the
result, we get back to the original function f (p. 401).

Then, three examples are provided (Examples 2—4) wherein Examples 2 and 4 focus
on the praxis block, while in Example 3, the focus is on the logos block. Example 2 is

about finding the derivative of g(x) = f;cx/l + t2 dt where it is solved by considering
f(t) =+v1+t? and using the FTC1. Example 3 is a contextual illustration. The

authors start with pointing that an accumulation function “may seem like a strange way
of defining a function” (p. 402), but such functions appear in many STEM fields. Here,

2
they provided the Fresnel function, i.e., S(x) = foxsin (ng )dt, as an example,

mentioning from where it is originated and where it has been used (i.e., in the design
of highways). Then, they calculate the S'(x) using the FTC1 and labelled it f(x). In
addition, among other things, they sketch S(x) and f(x) in one graph (Figure 2d) to
probably help readers realize the connection between an accumulation function and its
rate of change, and/or in their words, “give a visual confirmation of Part 1 of the

4
Fundamental Theorem of Calculus” (p. 402). Example 4 (i.e., “Find ;—x ) 1x sect dt” (p.

402)) is similar to Example 2, however, here the chain rule is also required to be used
as part of the technique for solving this task. Here the authors do not discuss why using
chain rule is needed. After this example, the second part of the FTC is discussed. Before
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moving to the next case, it is worth noting that in the exercises following this section,
there are five tasks similar to Example 1 addressing the logos block, and 12 tasks that
are similar to Examples 2 and 4. These tasks ask readers to calculate the derivative
using FTC1 addressing the praxis block, where for some, the chain rule should be used.

Case 2: Integration and the fundamental theorem of calculus

In this case, FTC1 is discussed by utilising a contextual task, and the focus is mainly
on the logos block. Early on, Grant mentions that he wants viewers to realize that the
integration and differentiation are inverse process. Then, a contextual task is presented
for discussing the integral and both parts of the FTC:

Imagine that you’re sitting in a car, and you cannot see out the window; all you see is the
speedometer. At some point, the car starts moving, speeds up, then slows back down to a
stop, all over the course of 8 seconds. The question is, is there a nice way to figure out how
far you’ve travelled during that time, based only on your view of the speedometer? Or [...]
can you find a distance function s(t) that tells you how far you’ve travelled after a given
amount of time, t, somewhere between 0 and 8 seconds.

To approach this task, Grant assumes that the velocity at each second is provided in
this example, plot those coordinates on a v-t plane, and assumes that the function that
model velocity is v(t) = t(8 — t). Among other things, Grant focuses on how to find
the area bounded by the velocity graph and the concept of integral. Focusing on FTC1
comes later by returning to the velocity example and addressing the logos block:

[...] Think of this right endpoint as a variable, T. So, we’re thinking of this integral of the
velocity function between 0 and T, the area under this curve between those two inputs, as
a function, where that upper bound is the variable. That area represents the distance the car
has travelled after T seconds, right? So, in reality, this is distance versus time function,
s(T) [Figure 3a]. Now ask yourself: What is the derivative of that function? On the one
hand, a tiny change in distance over a tiny change in time, that’s velocity [...] But there’s
another way to see this [...] A slight nudge of dT to the input, causes that area to increase,
some little ds represented by the area of this sliver. The height of that sliver is the height
of the graph at that point, v(T), and its width is dT. And for small enough dT, we can
basically consider that sliver to be a rectangle [Figure 3b]. So, this little bit of added area,
ds, is approximately equal to v(T)dT. And because that’s an approximation, it gets better

and better for smaller dT, the derivative of the area function Z—; at this point equals v(T),
the value of the velocity function at whatever time we started on [...] The derivative of any
function giving the area under a graph like this is equal to the function for the graph itself.

Furthermore, toward the end, Grant also discusses the situation where the velocity
function is negative and how it could impact the accumulation function:

What if the velocity function was negative at some point? Meaning the car goes backwards.
It’s still true that the tiny distance travelled ds on a little time interval is about equal to the
velocity at that time multiple by the tiny change in time [on the screen, ds = v(t)dt], it’s
just that the number you’d plug in for velocity would be negative, so that tiny change in
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distance is negative. In terms of our thin rectangles, if the rectangle goes below the
horizontal axis [...] its area represents a bit of distance travelled backwards, so if what you
want in the end is to find the distance between the car’s start point and its end point, this is
something you gonna want to subtract [...] Whenever a graph dips below the horizontal
axis, the area between that portion of the graph and the horizontal axis is counted as
negative [...]

Figure 3: Left: (Figure 3a); Right: (Figure 3b), screenshots use ith permission.
Case 3: Fundamental theorem of calculus—Part 1

In this case, the praxis block is the focus as opposed to the previous case. At the outset,
PatrickJMT highlights that tasks related to this topic “typically involve taking the
derivative of integrals™. A definition of the FTCL1 is presented on the screen right from
the beginning of the video, closely resembling Stewart’s definition. After the
introduction, he reads the FTC1 aloud. Following this, PatrickJMT focuses on the
technique that can be used for such a task: “so really all that happens is, it says this
variable [x], [...] this upper limit gets plugged in [on the screen, he uses a blue pen to
show this [ ], is what it amounts to”. The rest is dedicated to a single task type,

finding the derivatives of integrals using FTC1. Four examples are solved here
2
“g(x) = flx(t2 —1)2%dt, h(x) = fxz[cos(tz) +t]dt, g(x) = f‘/z " ds, [and]

1 s2+1
glx) = ft’;x\/;ﬁ dt”. When solving these tasks, the logos block is only briefly

touched upon. He only refers to the chain rule when solving the third and fourth tasks
and [1] is used for the fourth task. Here is what he discussed regarding the chain rule:

Technically you are using the chain rule on all these problems [...] You can write this, do
a substitution, let u equal this [pointing to v/x] and justify what | am about to do using the
chain rule, but the basic idea is the following [and he continued with the technique].

DISCUSSION AND CONCLUSIONS

The FTC1, as described in Case 1, is transposed differently in Case 2 and Case 3. From
a praxeological analysis standpoint, FTC1 in Case 1 encompasses both the praxis and
logos blocks. Both components are discussed quite comprehensively. The main focus
in the text was the logos block; however, the praxis block is given more emphasis in
the exercises at the end of the section, as evidenced by the presence of 12 tasks focused
on finding the derivative of an integral, while tasks that emphasize the logos block are
less frequent. When comparing the teaching of FTCL1 in Case 2 with Case 3, the
analysis reveals that different types of tasks are discussed in these two cases. Case 2
places its focus on contextual tasks that aid students in developing the logos block,
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whereas Case 3 prioritizes the praxis block to differentiate various types of integrals.
It is worth noting that Case 2 does not delve into the techniques for solving these tasks
and instead primarily focuses on the logos block. This emphasis on the logos block is
consistent in other videos produced by this channel. In contrast, Case 3 prioritizes the
techniques that students need to learn to successfully complete their homework, as
discussed earlier in the methodology section. Such a focus on finding the derivative of
integrals does not come as a surprise to me. In one of my previous research projects
(see Radmehr, 2016, Chapter 6), | observed that such tasks were the central focus in
the lectures, tutorials, and assignments on the FTCL1 topic. Furthermore, these tasks
also appeared in the midterm exam of the calculus course. In conclusion, it seems that
the taught knowledge in YouTube learning resources serve different purposes and
address various aspects of mathematical praxeology based on the intentions of the
content creators in different teaching institutions (here, YouTube channels). As
undergraduate mathematics educators, | believe we are responsible for investigating
the opportunities that these teaching institutions provide for our students and
considering their possible inclusion in the support we offer, aligning with our intended
learning outcomes.

NOTES

1. https://www.youtube.com/watch?v=rfG8ce4nNh0&t=491s

2. https://www.youtube.com/watch?v=PGmVVvIglZx8&t=48s

3. https://www.youtube.com/watch?v=HflALigXJDo
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In the introduction to a Differential Equations course, students face the fact that the
approach promoted in the first units is not the same as that they were taught in their
previous courses, associated with Calculus. In this way it is considered that a
conceptual and procedural break exists between these courses. The purpose of this
project is to promote a learning trajectory based on the infinitesimal approach within
the ideas developed by Leibniz, where the differential played a fundamental role. In
this summary, one of the designed is shown, wherein students can have an encounter
with the notion of differential, which will help to introduce the notion of ordinary
differential equation in subsequent objectification processes.

Keywords: learning of Calculus, infinitesimal approach, differential, ordinary
differential equation, objectification.

BACKGROUND

Professors participating in the training of engineers have a common concern in the
learning process of Differential Equations —the way in which they are presented to
students in the courses in which they are first introduced and the prior knowledge that
the students are required to have. Among the requirements, students are expected to
have knowledge associated with Calculus, but they encounter a big problem: the
approach promoted in the introduction to Differential Equations course is not the
same approach they were taught in their previous courses. Specifically, in the
formulation of a differential equation represented as a quotient of differentials, they
are required to conceive the differential as a quantity that can be manipulated, that
allows modeling phenomena associated with reality, and that the same manipulations
allow you to solve them. This totally breaks with the conception that they may have
formed about the differential, because in a Differential Calculus course it has been
presented to them as a quotient that is restricted to being a limit, and that, therefore,
cannot be manipulated as required.

As a historical fact, Napoles and Negron (2002) point out that the concept of
differential equation remains related to the concept of differential until around 1821,
when Cauchy created the name derivative. In current textbooks, this version
established by Cauchy remains in force, "although when the methods for solving
first-order ordinary differential equations are presented, the first conception is used
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without making it explicit (that is, the derivative is no longer the derivative, but a
quotient between differentials)” (p. 47). In that sense, we can foresee difficulties
associated with the notion of differential given the incorporation of these two
versions in textbooks, and therefore in how the idea of differential is presented to
students in different university courses, as mentioned by Recalde and Henao (2018).
They maintain that it is common for a course associated with mathematics to present
the version established by Cauchy, but in courses that are related to physics usually
the infinitesimal strategies proposed by Newton and Leibniz are preferred.

The above allows us to think that the orientation of the courses prior to Differential
Equations, such as those in Calculus, should promote the understanding of a notion as
important as that of differential. In that sense, Recalde and Henao (2018) mention
that “the teaching of differential equations should include reflection and discussion of
the concept of differential” (p. 68), adding that usually in Calculus and Differential
Equations courses this concept is not taught.

THE PROBLEM

The historical development of ordinary differential equations (ODE) shows that the
way in which they emerged was from real-life phenomena, and that geometric
analysis was what allowed them to be proposed and solved. This contrasts with what
is presented today in “traditional” courses on Differential Equations for engineering,
since —as Carranza (2019) mentions— when analyzing the study plans and the
bibliography presented in them, we can find that working with algebraic methods is
the preferred method proposed from the beginning, and once these are developed in
the classroom, it is when we begin to work with real-life phenomena, which
predetermines the fact that the applications are influenced by the strategies followed
in the methodical presentation of the ODEs. Even if we look a little further back in
the curriculum and study plans, where in theory (although not explicitly) ordinary
differential equations first appear, that is, in a Differential Calculus course, it is
evident from the version of the derivative that is presented (Cauchy’s), based on
limits, it is difficult for ODEs to be introduced, since this approach restricts the
manipulation of differentials.

Continuing with the previous idea, it would seem contradictory that in a Differential
Calculus course the derivative is presented based on limits —a method that imposes
strong restrictions on the manipulation of differentials— and that in a Differential
Equations course —in whose first units the solution methods are presented— the
differentials are manipulated operationally, which is actually the essence of the very
first method presented in the course and the first method in history —separation of
variables (Napoles and Negron, 2002).

In view of this, the need to establish a solid conceptual bridge regarding the concept
of differential between Differential Calculus and Differential Equations courses is

133



clear, in such a way that students establish a relationship between said courses,
understanding that Calculus, seen under the infinitesimal approach where the
differential plays a fundamental role, provides the tools that allow modeling real-life
situations by posing an ordinary differential equation.

From the above, a key element in the development of ODEs is the concept of
differential, since it is directly involved in the derivation and solution of ODEs, in
terms of how Newton and Leibniz proposed it, that is, operationally. In this regard, it
Is important that both Calculus and Differential Equations courses delve into the
definition of differential, as mentioned by Recalde and Henao (2018), that is, that
reflection and discussion about the phenomenological meaning of this concept be
promoted in the classroom, since this would allow the translation from physical to
mathematical language of ODEs to be more understandable for students.

It is clear that the version of the derivative from the perspective of limits is
inadequate to give the differential the relevant role that it played during the rise of
ODEs. Therefore, it could be said that engineering students are being deprived of the
possibility of delving deeper into a concept that could be fundamental (Recalde and
Henao, 2018), especially to model real-life situations closest to them in mathematical
terms, and from there they can think of plausible solution strategies. Experimentation
within an extra-mathematical context where differentials are involved, and their
algebraic manipulation, could result in a path that helps them reflect and understand
the entire process of mathematical modeling and, in turn, see the usefulness of the
derivative in their own practices.

The version of differentials established by Leibniz could help students understand
notions that are complex for them (Ely, 2020; Veron et al. 2022). It is mentioned in
Veron et al. (2022) that the strategies used by students to respond to some questions
associated with differentials can be related to the approach established by Leibniz,
which reinforces the promotion of his approaches in this project. Furthermore, Ely
(2020) points out that the flexibility of working with differentials would allow
finding a differential equation, which in turn could answer several questions about the
situation that is evolving, among them, those associated with its solution for which
the integral has a fundamental role, interpreted from the perspective of the
infinitesimal approach.

THEORY OF OBJECTIVATION

In the Objectivation Theory (OT), the development of learning is conceived as a
result of collective processes that, as Radford (2020) emphasizes, “are rooted in the
social, cultural and historical” (p. 17). To reinforce the differences between OT and
other theoretical approaches, Radford (2023) points out that “knowledge is not
something that the teacher transmits to the child. Nor is knowledge something that
the child constructs on his or her own” (p. 16). He adds that in OT it is assumed that
mathematical knowledge already exists, that it is rooted in the historical and cultural
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contexts from which it has been established, and that ways must be sought instead to
organize the student's encounter with said knowledge in the classroom. These are
seen as teaching and learning processes. That said, what is sought in this project is
that the student's encounter with the notion of differential be based on what
historically gave rise to it, as well as the contexts and phenomena that allowed its
introduction and development. For this reason, it is considered enriching that OT is a
social theory, according to which the students and the teacher, by assuming the
commitment to the activity, are able to capitalize from this encounter, trying to make
it natural, not just problematic, and even less traumatic.

One of the first concerns was to clarify to what extent OT would allow the
construction and harmonization of conceptual and procedural bridges between the
Calculus (Differential and Integral) and Differential Equations courses. To do this, it
has been necessary to delve deeper into the relevance of designing an intervention
project from the point of view of OT (especially since it has only been used for
research projects). In this regard, Radford (2023) points out that in education it is
important to provide optimal conditions so that the encounter with knowledge is as
rich as possible. Since the infinitesimal approach is different from that traditionally
promoted in the calculus classroom, to talk about the success of this approach, or that
it can be considered a viable route in learning Calculus and Differential Equations, it
Is important that from the work Together, students are precise in their verbal and
gestural arguments about the notions that are being addressed. In that sense, OT
considers precision as a fundamental aspect; Radford points out that to achieve the
encounter with knowledge (objectification), students must be precise in the way of
expressing themselves.

By proposing an approach different from the traditional one, the types of activities
that are promoted in the objectification processes will be fundamental for the notions
of differential and ordinary differential equation to be introduced.

It is precisely in the processes of objectification, where Radford (2003, 2005, 2008,
2010) strongly involves Vygotsky's semiotics. In particular, the actions that are
developed in the objectification processes, and specifically in the activities that are
promoted in the proposed intervention, are associated with semiotic means, for which
Radford (2003) points out that he refers to the objects, tools, linguistic devices, and
signs that individuals intentionally use in social meaning-making processes to
achieve a stable form of consciousness, to manifest their intentions, and to carry out
their actions to achieve the objective of their activities (p. 5).

Such means are used by students to express themselves or convey certain ideas.
Relying on joint work, in which they must be involved as active participants
alongside the teacher, and where discussions are generated in various directions,
these media are refined and connected with each other for the emergence of what
Radford (2005) defines as semiotic nodes, which are “a piece of students' semiotic
activity where action and various signs (for example, gestures, words, formulas) work
together to achieve the objectification of knowledge” (p. 2). Therefore, in OT those
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are considered as a prior step to achieving objectification. The intention of these
nodes should be that students move towards a precise way of expressing themselves
and arguing, using a smaller number of semiotic means. This reduction of semiotic
means, which is compensated by the concentration of meanings to express their ideas,
Is what Radford (2010) calls semiotic contraction. Furthermore, when students use
their previous experiences to guide their actions in a new situation to achieve an
encounter with knowledge, it is called iconicity (Radford, 2008).

To represent the above, Figure 1 outlines the considered elements of the theory and
specifies some of the objectification processes that are involved.

Figure 1.
The objectivation processes for the learning of the concept of ODE
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EXAMPLE OF THE PROPOSED ACTIVITIES

In this section, one of the designed activities is presented as an example, belonging to
the objectivation process 2 (PO,), called “differential of a dependent variable
magnitude.” It is important to note that for this process there are three activities
designed in a preliminary phase, in such a way that it is expected that these will be
sufficient to enable students to encounter the notion of the differential of a dependent
variable magnitude. Considering the objectivation developed in PO, as a fundamental
element in this process, so that with this, they are able to identify the relationship
between the independent and dependent variable magnitudes. Below are the details of
the activity.

Activity 2. The algebraic calculation of the infinitesimal variations of a dependent
variable magnitude. Case 2.
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Taking advantage of what was done in Activity 1 of PO,, this activity begins by
proposing three possible scenarios to calculate the differential of a dependent variable
magnitude (Bezout, 1770), these are:

du =u(z+dz) —u(z)
du =u(z) —u(z —dz)
u(z+dz) —u(z —dz)
“= 2

In the activity, students are asked to work with the relationships previously
established in the course, about the problem of filling a conical container.
Specifically, they are asked to work on the calculation of the differential of the direct
proportionality relationships found in the problem. As an example, the case of the
relationship between the radius and the height of the liquid of the circular surface is
shown.

h—H
z—RT

0<r<R, 0<h <H.

Its differential could be calculated within any of the three scenarios above. The case
where the current moment and the immediately previous one is considered is
presented here.

b) dh, == () — = (r — dr)

dh =2y~ Ey s Har 2By
=RV TRV TR T RY

The above is intended to indirectly bring students closer to the application of the
operational rules of differentials, which will be explored in greater detail in the
objectification process 3. In addition, they are asked to perform this calculation for
five other relationships, for which it is expected that while performing the work (first
In teams and then as a group), each of these differentials will be precisely calculated,
hoping that they use the three previous scenarios. It is desirable that this activity be
carried out in at most one hour of class.

DESCRIPTION OF THE MISE-EN-SCENE

It is important to note that a first trial of the first two objectivation processes has
already been carried out. We worked with 28 Industrial Engineering students who are
taking the course “Differential and Integral Calculus 1” within their first semester and
who had made significant progress in the course, which was developed using the
infinitesimal approach. The students were taken to a classroom that allowed them to
have adequate workspace, especially to be able to work in teams. Teams of three
people were formed and one student from each team was asked to record what their

137



classmates did, in order to compile most of the actions that were carried out in the
classroom by them.

Furthermore, it is worth noting that since we are working with a group exposed to the
variational approach from the beginning of the Differential and Integral Calculus 1
course, the activities were adapted to the work pace that the students had. Therefore,
the activities are part of the continuity of the course and were considered a
fundamental part of the evaluation of the students; thereby it was expected that they
would assume commitment, responsibility, and care for one another in the
development that each of them had in the classroom.

For the development of the activities in the classroom, the phases of joint work
indicated by Radford (2020) were considered. They are: presentation of the activity
by the teacher, work in small groups, teacher-student discussions, group discussions,
and general discussion. In that sense, the intention at this point is that both teacher
and students must be active participants throughout the activity.

Specifically, Activity 2 was carried out in sessions 8 and 9, which corresponds to two
hours of class. By then, students had gone through several introductory readings on
infinitesimals and activities corresponding to the first and second objectivation
processes that were carried out in the previous sessions. Furthermore, for the
activities they were provided with only one worksheet per team, so they had to have a
joint response in each requested section.

To collect information, the students video-recorded the sessions and took notes of
what they did, which they uploaded to the work group formed on the Microsoft
Teams platform. Also, the students handed in the worksheets to their teacher. In
addition, the author was counted as an observer of the sessions and notes were taken
to contrast with what was reported by the students.

ANALYSIS OF ACTIVITY 2

A preliminary analysis of Activity 2 has been carried out based only on the notes
collected by the session observer. At this time, the experimentation is still being
carried out, so these observations still need to be compared with the worksheets and
video recordings that the students uploaded to the Microsoft Teams platform.

At the beginning of the Activity in session 8, the teacher asked the students to pay
attention to the three solution schemes that the students had previously constructed
based on the formulations made by Bezout (1770). With this, the expectation was
that, for each case of the proportionality relationships established in the problem of
filling a conical container, the students would be able to determine the differential of
the dependent variable magnitude with the three schemes and reach the same result.

When beginning the work with the relationship between the volume of the liquid with
the flowrate and time, most of the teams had difficulties in identifying the
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independent variable magnitude, since in the relationship V; = F - t, the students used
the flowrate as that magnitude so that the teacher had to intervene in the teams that
encountered this difficulty, trying to remind them that, in the video of the filling of a
conical container, the flowrate acted as a constant magnitude. Furthermore, the
functional notation of the three schemes caused difficulty in algebraically
representing the differential of the volume of the liquid, so that the teacher's
intervention had to be aimed at first trying to represent the magnitudes and their
changes separately, and then move on to the calculation of that differential.

Something that was not present in the students' mobilizations is the conception of the
differential of a constant magnitude, which they had previously worked on, so that
the operational rule of multiplication, which should be used for the cases of
proportionality relationship, was not considered by any team.

Table 1 is presented to summarize the theoretical elements detected in Activity 2,
including the semiotic means used by the students, the semiotic nodes, and a first
version of a semiotic contraction.

Table 1.
Theoretical elements present in Activity 2

Students used phrases like “remember
that the differential represents an
infinitely small change.” Furthermore, in
Verbal expressions the relationship between magnitudes
“the differential of the independent
variable magnitude influences the
dependent one”

This type of gesture appeared when
students specifically pointed out on the
worksheets the formulas, they should
adhere to in determining the differential.

Deictic gestures

Semiotic media This type of gesture appeared when the
students remained attached to filling the
conical container to try to conceive the
differential of the dependent variable
magnitude, from the differential of the
independent variable magnitude.

Physical iconic gestures

This type of gesture appeared when the
students remembered from Activity 1
Symbolyc iconic the algebraic representation associated
gestures with the magnitudes, which later helped
them to represent the differential of the
dependent variable magnitude.
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It became noticeable that the students conceived the differential as a
manipulable quantity so that, in the case

dV, = F(t) — F(t — dt)

Semiotic nodes dV; = F(t) — F(t) + F(db),

students divided by the time differential in the ratio to determine the
instantaneous rate of change.

av;

ar =F

Although this is not the activity that closes the objectivation process 2, it
was possible to glimpse in the students' arguments that they were close to
objectivation, since they were able to identify that the differential of a
dependent variable magnitude does not change uniformly the way that an
independent variable magnitude does.

Semiotic
contraction

CONCLUSIONS

The proposed intervention is still in its initial phase, so that only a first
experimentation has been carried out and not all the processes that have been
considered. However, despite being an early stage of the intervention, it has been
shown that promoting the infinitesimal approach as an alternative route for learning
in an Engineering Calculus course is a viable option, since it allows students to take
ownership of the concepts associated with infinitesimals and to connect them with
some real-life phenomena. It is assumed that the fact that they have previously
exposed to this approach predisposes them to develop their language in terms of what
IS expected. Furthermore, the theoretical elements indicated allow that in the group
work done by the students, conjectures can be proposed that through the collaboration
between teams and the general discussion end up either materialized or reconceived,
so that this allows them to achieve the encounter with knowledge. .

In order to contrast the above approach, the intention is to use the proposed
intervention with a group of students who have been exposed to the traditional
teaching approach.
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In undergraduate mathematics, calculus and analysis appear as related but often
separate courses that both take the importance of certain objects for granted. While
both constructivist and epistemological research programmes in mathematics
education had important early agendas related to the questioning of mathematical
contents to be taught, both seem to have later focused almost exclusively on contents
delivery, leaving the selection and design of contents to scholarly tradition. In this
paper, we take the “elementary functions” of secondary and undergraduate course in
Calculus as an example. When, if ever, should students encounter rationales for the
choice of these functions as “basic”?
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AN INTRIGUING PROLOGUE

In 1966, Walter Rudin (1921-2010) wrote the seminal and still widely used textbook
Real and Complex Analysis, which as the title says is characterized by an attempt to
integrate two otherwise often separate fields of study: real analysis (based on measure
theory) and complex function theory. The book is typical for its genre: it has few
worked examples, while elegant proofs of central theorems of analysis take up most of
the text. Curiously, it begins with a “prologue” on exponential functions, that we shall
also take as our point of departure here. The very first paragraph reads:

This is the most important function in mathematics. It is defined, for every complex number
z, by the formula

e}
n

exp(z) = pory (1)

n=0
The series (1) converges absolutely for every z and converges uniformly on every bounded
subset of the complex plane. Thus exp is a continuous function. The absolute convergence

of (1) shows that the computation

(o]

zalz ! 21121 lkbnk 2(a+|b)n
k m! n k!(n—k)! n!

k=0 m=0 n=0

is correct. It gives the important addition formula
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exp(a) exp(b) = exp(a + b) (2)
valid for all complex numbers a and b. (Rudin, 1986, p. 1)

The book is clearly not written for readers with no mathematical preparation.
According to Rudin (1986, p. xiii), “the prerequisite for this book is a good course in
advanced calculus (...) The first seven chapters of my earlier book Principles of
Mathematical Analysis furnish sufficient preparation”. It is doubtful that many
universities, today, offer courses labelled “advanced calculus™ that teach what it takes
to follow the “computation” cited above, but of course the notions of pointwise,
uniform and absolute convergence of complex power series do appear in such courses
or at least in the transition to real analysis. What we shall focus on here is the more
informal notion “important”, used twice in the above quote. The first use is a strong
claim: “This is the most important function in mathematics”, merely pointing at (1).
There 1is, perhaps, a kind of justification in the second use: “important addition
formula” (pointing at (2)). However, the rest of the preface merely derives other
properties of the (complex) exponential function, most certainly met by students in
previous calculus courses. Later in the book, exponential functions do appear here and
there, both in the text itself and in exercises - most prominently perhaps in the
development of Fourier analysis, based on Hilbert space theory (Chapter 4), and of
course in the chapters on classical complex analysis. But the fundamental importance
of (1) and (2) remains opaque.

RETHINKING OR QUESTIONING MATHEMATICAL CONTENTS AS A
KEY DIDACTIC TASK

Confrey and Smith (1994, p. 135) pointed out a general challenge in research on
mathematics education, while referring to the agenda of constructivism (more
dominant 30 years ago than now):

Constructivists have effectively documented that student errors are seldom random or
capricious - they have a rationality and functionality of their own. In this regard,
constructivists have documented that teachers and researchers must pay close attention to
how a mathematics problem is conceptualized, worked on and evaluated by students. (...)
reform efforts which attempt to open up and rethink the mathematical content are targeted
mostly at the elementary grade levels, while secondary educational reform is more
typically limited to pedagogical approaches as the content is assumed to be well-secured
in its expert structure.

In the paper, which these considerations preface, the authors in fact examine and
question the meaning and importance of functions, and in particular the fundamental
properties of linear and exponential functions that make these turn up as models in both
secondary mathematics, its uses in other school subjects, and even outside of schools.
Developing a covariational view of functions, as an alternative to the more
conventional correspondence approach, the meaning of (what is essentially) property
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(2) 1s interpreted in terms of “rates of change” in two covariant quantities. In the next
sections, we shall develop an analogous idea for the undergraduate level, related to
functional equations. We do so as a case for a more general hypothesis: what the
authors propose for secondary level reforms (understood as systematic efforts to
improve mathematics education) is no less relevant for the university level. Many
efforts of reform are, also at this level, focused on generic pedagogical approaches like
flipped classroom or other supposedly student-oriented forms of teaching, rather than
on “efforts which attempt to open up and rethink the mathematical content”. Little or
no effort is put into a student experience of the rationales — we could say, of the
mathematical value — of what is taught, probably from the assumption that the content
will speak for itself. The more or less tacit assumption that “content is assumed to be
well-secured in its expert structure” is likely to be even more part and parcel of the
institutional contract at universities, with the frequently praised collaboration between
what one terms “mathematicians™ and “educators”: the former are in charge of the
content and the latter are the supposed experts of delivery to more or less challenged
students.

Several mathematicians and didacticians (most commonly, hard to classify uniquely as
either) have challenged this division of labour, at least for the secondary level, also
much before Confrey and Smith. Klein’s (2016) work on “elementary mathematics
from a higher standpoint” advocated and demonstrated how both modern and historic
approaches to elementary concepts such as functions should be made available to
future teachers. He considers that “to instruct scientifically can only mean to induce
the person to think scientifically, but by no means to confront him, from the beginning,
with cold, scientifically polished systematics™ (Klein, 2016, p. 292). Several decades
later, Klein’s proposals concerning the centrality of functional thinking in secondary
mathematics were superseded by the “New Math” reforms, which certainly went much
beyond pedagogy and form in their attempt to rebuild mathematics teaching at all levels
on modern foundations such as set theory and logic. The most lasting effects of these
changes occurred at universities (Bosch et al., 2021). Indeed, present-day students are
likely to be treated to texts like Rudin’s book. In the heydays of New Math, texts for
the secondary level also confronted students with “cold, scientifically polished
systematics” with no traces of their historical origin or motivation. One can interpret
the early works of Freudenthal (1968) and Chevallard (1985) as problematising this
situation, calling to put fundamental questions and phenomena to the forefront of
school mathematics, and thus to rethink not merely its delivery but also its contents.

Chevallard (1985) introduced the fundamental distinction between external and
internal didactic transposition, in order to emphasize the link — but also the difference
— that exists, in modern school institutions, between the act of forging official
educational programs for the school, and their day-to-day implementation within the
school. Teachers are mainly (if not only) in charge of the latter. Universities function
in this regard — much more than in the epoch of Klein — as schools (Verret, 1975).
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While university teachers may exercise some course-level influence on the external
transposition, the remarkable stability and similarity of the overall structure of
university mathematics programmes suggest that this influence remains in practice
very limited (Bosch et al., 2021). Certainly, there exist documented examples of
undergraduate mathematics programmes which deviate substantially from the common
forms and contents, not least in smaller and newer college-type institutions (see eg.
Niss, 2001; Buteau et al., 2016), where they may both arise and disappear more easily.
But the overall homogeneity remains, as does the question of what forms and means a
deeper questioning of well-established contents could take in mainstream university
institutions.

The general question of selecting and organizing mathematics contents in university
programmes is a difficult and complex one, which involves not only the international
scholarly community of mathematicians, but also more subtle sociological features of
university institutions, like those documented by Verret (1975) in his analysis of
didactic transposition in this context. The modular structure of many university
programs — with each module being responsible to teach a clearly delimited and
strongly coherent collection of theoretical knowledge — leads to a sequence of student
encounters with dense packages of given, long established answers. Students get no or
at best very limited opportunities to experience mathematics as a problem solving,
questioning activity, especially as the amount of material to cover in each module tends
to increase, to satisfy more advanced needs. In the sense of Bouligand (see Bosch and
Winslew, 2016), the emphasis on syntheses is much stronger than on questions or
problems.

As a result, students are not given deliberate opportunities to reflect on the importance
or motivation of fundamental mathematical constructs, such as the exponential
function, even if applications may be quite abundant (while often appearing at quite
distant moments of study). Especially for future researchers and teachers of
mathematics, one can argue that undergraduate programmes should offer such
opportunities for students to work on such questions, possibly as extensions of, or
complements to, standard modules. Indeed, both professions are concerned with
selecting, formulating and engaging with mathematical problems, and with developing
explicit and deep knowledge of how certain fundamental constructs and syntheses
contribute and combine to solve them.

THEORETICAL CASE STUDY: WHAT MAKES THE REAL VALUED
EXPONENTIAL FUNCTION IMPORTANT?

A first observation, concerning the opening quote, is that Rudin’s definition (1) is
explicit and based on analysis (power series and their convergence), while (2) is at first
sight merely a derived property of the object defined by (1), and moreover, a purely
algebraic property: it states that exp is a homomorphism from (C, +) into (C,-). Other
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: : : . od s
properties are derived later in the prologue, like —,€XpZ = expz, but in this short case

study we will just focus on (2), and mostly restrict our attention to real (rather than
complex) variables. It is a main purpose of this paper to exemplify the kinds of
questioning that undergraduate programmes do not (but, as we shall argue, ought to)
include, in order for students to evaluate or appreciate the meaning and value of central
mathematical constructs.

In the language of Confrey and Smith (1994), (2) then means that exp defines a
covariation of variables with a multiplicative rate of change : adding a fixed value k to
the first variable leads to multiplying the second variable by a fixed value k'. In
functional notation,

exp(x + k) =k’ - exp (x)

where k' = exp (k). Similar assumptions on rate of change occur in many models of
familiar phenomena, from compound interest on savings accounts to radioactive decay.
A priori, the particular construction (1) could be just one example of a function
satisfying the more abstract equation

fx+y)=f)f), x,y ER. (3)

To evaluate the importance of the function defined by (1), it is therefore reasonable to
ask if there are other functions satisfying (3) than the one defined by (1). In fact,
fe: x — exp(cx) defines such a function, for any real c. But then — are there other than
these?

Before answering this question, we could first think about what makes f, work just as
well as exp, in the sense of having the homomorphism property given by (3). In fact,
any linear function (defined, for any ¢ € R, by x = cx) is a homomorphism from
(R, +) into (R, +). Composing it with exp yields a homomorphism from (R, +) into
(R, -), and in fact for any homomorphism h from (R, +) into (R, +) we could get a
function satisfying (3) by definition £ (x) = exp(h(x)). So we might as well begin by
investigating the possibilities for having functions h that satisfy

h(x +vy) = h(x) + h(y), x,y € R. 4)

Readers (and some undergraduate students) will no doubt recognize this as part of the
condition for a linear map (on the vector space R). To Confrey and Smith, (4) is an
advanced or somewhat technical formulation of what it means for a covariation to
exhibit an additive rate of change. Of course, at the undergraduate level, the use of
functions must be supposed to be well-established, although its actual meaning to them
will depend on whether the pre-university experience has been informed by thorough
content questioning.

It 1s time to point out that (3) and (4) are functional equations, that is, they enounce a
property that functions could have, and come (like ordinary equations) with the natural
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question: what functions actually satisfy the equation? It is a singular irony that current
external didactic transpositions make it unlikely that undergraduate students have
investigated this question for (3) and (4), which are both simple and significant as
argued by Confrey and Smith — while they are routinely exposed to differential
equations, a technically more complicated type of functional equation. They may even
answer the question in the title of this paper by saying that exp is the unique solution
to f' = f with the boundary condition f(0) = 1. This is not bad, of course, but still
way less fundamental than a possible characterisation in terms of the purely arithmetic
property in (3), if it exists.

Students’ investigation of (3) and (4) could of course be organised in many ways,
following a thorough reflection on what makes the properties they enounce
fundamental and important (for instance based on elements of Confrey and Smith,
1994, as outlined above). Teacher students, who have worked thoroughly with
Brousseau’s puzzle situation, may realize the fundamental importance of (4) in the
theory of similarity in the plane (see, for instance, Winslew, 2007). This, then, would
make the solutions equally important.

If undergraduate students investigate (4) further, based on literature or the internet, they
will soon discover that the equation is in fact named after Cauchy — since in fact, it was
Cauchy (1821, pp. 104-106) who first proved that linear functions are the only
continuous functions on R which satisfy (4). Working with some form of this proof,
they will realize that continuity is not required for the simpler case of functions defined

only on Q. In fact, one easily derives from (4) that h (%) = %h(l) forallmeZ,n €

N, and only then uses continuity to conclude h(x) = xh(1),x € R. Further study of
literature could lead students both to discover a number of alternative conditions which
together with (4) ensure linearity (see for instance Jung, 2011, p. 21), and to the fact
that weird non-continuous solutions to (4) do exist (Hamel, 1905), at least if one
assumes some form of the axiom of choice.

In most applications, whether in geometry or in natural sciences, assuming continuity
for solutions may in fact be quite natural. With that assumption, the solution for (3) can
be derived much as for (4). Here is one way: if f is any solution to (3), then f(x) =
f(0)f(x) holds for all € R, so either f = 0 or f(0) = 1. Certainly, f = 0 solves (3);
to investigate other solutions, we assume f(0) = 1. But then, for all x € R, continuity

at 0 implies that there is some n € N so that f G) # 0 and thus f(x) = f (n : £) =

n
X

n 2
f (;) # 0.Soif f # 0, f hasno zeros atall, and as f(x) = f (g) > 0 we see that

f > 0. Then with h(x) = ln(f (x)), (4) holds and so by the above, h is linear and

continuous. It follows from Cauchy’s result that f(x) = exp(cx) where ¢ can be any
real number.
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All in all, the importance of exp can be explained, at least in the real variable case, by
the fact that its composition with linear functions give all non-zero continuous
solutions to the functional equation (4). In courses for advanced undergraduate
students, we have experimented various designs of assignments which allow students
to work on some of the above arguments, and found that reconstructing or looking up
such arguments contribute to their appreciation of the fundamental mathematical
importance of exp. In the next section, we complete the picture by looking at two other
functional equations which complement (3) and (4).

COMPLETING THE REAL PICTURE: WHAT OTHER FUNCTIONS ARE
IMPORTANT?

In terms already used above, which are likely to be more familiar to undergraduate
students than the idea of covariations and their various rates of change, we can interpret
the above as classifying the continuous homomorphisms (R,+) = (R,+) and
(R,+) - (R*, -). They are, respectively, all linear functions (no constant term) and
all exponential functions. Students may then ask (or be asked) about the two remaining
cases: can we also determine all continuous homomorphisms (R*,) - (R, +) and
(R¥,) - (R¥,) ?

From secondary school, students know that the real exponential function exp is
injective, with inverse In. Now, if f: R* — R satisfies f(xy) = f(x) + f(y) for all
x,y € R*, then if we let g(x) = f(e*) for x € R, we get g(x + y) = g(x) + g(v)
for x,y € R. If f is also continuous, then so is g, and by Cauchy’s 1821 result, we
have c €R so that g(x) =cxfor all x € R. But then f(x)= f(elnx) =
g(nx) = c - Inx. Certainly, this is a solution for any ¢ € R, and if ¢ # 0 the solutions
can also be written in the form f(x) = log, x where a = exp(1/c) is any positive
number different from 1. Thus, continuous homomorphisms (R*, -) — (R, +) are the
logarithms and 0. By a similar argument, continuous homomorphisms (R*,-) - (R*,)
are the power functions x = x% where a € R.

Continuous .
homomorphisms (R, +) (R,")
from | to —
(R,+) Linear functions Exponential functions
(R*,) Logarithms and 0 Power functions

Table 1. Continuous homomorphisms on additive and multiplicative groups of real
numbers.
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To sum up, Table 1 shows four classes of “important functions”, deriving their
importance from being the continuous functions that satisfy the four arithmetical
functional equations.

Investigating the four functional equations up to establishing the picture in Table 1
could, in fact, be an important topic in an undergraduate capstone course, also in view
of looking forward to graduate mathematics (hints in the next session). The topic could
and should, especially for future secondary teachers, also be related to the more
elementary conceptualisationss of Confrey and Smith (1994), considering covariations
generated by simple arithmetic progressions, and their practical uses.

GOING COMPLEX

One can ask similar questions about the homomorphisms of any other ring or field, and
as in the real number case, further conditions may ensure a nice classification. At the
undergradate level, a natural first step is to ask whether something like Table 1 holds
for the complex number field. There is no difficulty in extending the result to
continuous homomorphisms (C, +) — (C, +), that is, they are simply linear functions.
The rest of the table cannot be generalised directly for the simple fact that C* does not
make sense (in fact, C cannot be made into an ordered field). Still, to establish a similar
importance of trigonometric functions (about the only transcendental functions
students know but besides the three non-linear ones in Table 1), it would be worthwhile
to consider at least the case of continuous homomorphisms (C, +) — (C,-), to which
exp belongs according to (2). As in the real case, f(z) = exp(cz) indeed defines more
examples (now with complex constant ¢ and variable z), and one can then show that
besides 0, there are no more than this, by reducing to the real case already treated above.
Alternatively, one can replace the assumption of continuity by the existence of a
complex derivative at 0, and use the complex version of (4) to derive that is f entire
with f'(z) = f(0)f(z), z € C, from which the result follows readily. Whether one
derives this as a special case, or it appears as an intermediate step to prove the general
case, we also get that all continuous homomorphisms (R, +) — (T,-), where T € C is
the unit circle, are of form f(x) = e!“* = cos cx + i sin cx for some ¢ € R. Besides
reminding students that cosine and sine can be constructed as a derivate of (1), this
characterization shows their relative importance, as the real and imaginary parts of
continuous homomorphisms of the real line onto the circle. For future teachers,
students can also revisit the high-school interpretation of cosine and sine as
“coordinates on a circle” (where the variable is interpreted as an angle, a highly
informal notion at pre-university level (Winslew, 2016).

One can naturally also investigate the remaining two functional equations in the
complex case, and in fact for other fields, Banach algebras, and so on. The study of
homomorphisms (often endomorphisms) appears with additional hypotheses in many
areas of graduate mathematics, such as algebraic topology, Lie algebra theory and
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functional analysis - often with some of the elementary settings considered above as
illustrative special cases.

OUTLOOK: QUESTIONING AND VALUING IN UNIVERSITY
MATHEMATICS

The value (or importance) of a mathematical construct cannot itself be defined or
determined mathematically. It is not even what Chevallard (1985, p. 49-51) calls a
paramathematical object, unlike notions like equation or proof, as one can do
mathematics without ever referring to the value of the objects that one treats. It is quite
different when teaching: it is part of the institutional contract that universities (and
other schools) do not merely teach any mathematics, but that the external didactic
transposition must somehow select and prescribe topics of considerable potential value
to the learner. Even to university students, both future teachers and scientists, it does
not (practically and ethically) suffice to claim value: it must, at least for the most
fundamental constructs, be part of the teaching to allow students to question and
evaluate these constructs, mathematically or otherwise. In the special case of future
teachers, it is related to the recently very active research theme of “making university
mathematics matter for secondary teacher preparation (Wasserman et al., 2023).

Again in Chevallard’s terms, mathematical value is a profomathematical notion
(informal notions that cannot be mathematized): constructs derive their mathematical
value from the questions they serve to solve, whether they are strictly mathematical or
not. We have moved from the value of objects or answers, to valuing questions: what
questions are worth solving? This, indeed, depends on the learners’ foreground. But
there is still a considerable advance from merely claiming that certain mathematical
constructs or answers are important, to organising an experience of how they serve to
solve specific questions.

Questioning and valuing thus go hand in hand, in any attempt “to induce the person to
think scientifically” (Klein, 2016, p. 292), and requires teachers to “pay close attention
to how a mathematics problem is conceptualized, worked on and evaluated by
students” (Confrey and Smith, 194, p. 135). Realizing the proposals above, for
questioning and valuing the meaning of elementary functions based on functional
equations, depends ultimately on just that.
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DE LA ENSENANZA TRADICIONAL AL ENFOQUE GEOMETRICO

En México, la asignatura de ecuaciones diferenciales ordinarias (EDO) suele ser obli-
gatoria en la universidad. Los libros de texto empleados en su ensefianza (e.g., Edwards
et al., 2021; Elsgolts, 1977) abordan los diferentes métodos de solucién: analitico, nu-
mérico y grafico, desde una perspectiva algoritmica para los primeros dos, mientras
que relegan los métodos cualitativos a un segundo plano. De acuerdo con Bajpai et al.
(1970) los estudiantes, con la practica, adquieren experiencia para aplicar diversas téc-
nicas y procedimientos para encontrar la solucion o soluciones de algunas EDO. Sin
embargo, detras de estas resoluciones correctas, subyacen ideas erroneas y lagunas
conceptuales (Arslan, 2010). En contraparte, la perspectiva geométrica y el estudio
grafico de las EDO promueven un acercamiento conceptual y visual (Artigue y Gaut-
heron, 1983; Rasmussen, 2001). En ésta, el estudio del campo de direcciones consti-
tuye una herramienta didactica, que permite a los estudiantes visualizar y experimentar
con conceptos abstractos, y contribuye al desarrollo de habilidades de pensamiento cri-
tico. Con base en lo anterior, se propuso la siguiente pregunta de investigacion: ¢Cuales
son los niveles de comprension del campo de direcciones asociado a una EDO de pri-
mer orden? Para abordarla, se consideré el enfoque cognitivo de los modos de pensa-
miento (Sierpinska, 2000), los cuales se especificaron para el estudio de este concepto.
En este poster se ilustran elementos del modo de pensamiento sintético-geométrico.

MARCO TEORICO Y METODOLOGIA

Sierpinska (2000) establece tres modos de pensamiento asociados al estudio de un con-
cepto: Modo sintético-geométrico (SG), Modo analitico-aritmético (AA), Modo anali-
tico-estructural (AE). Su identificacion permite establecer una caracterizacion cons-
ciente de los niveles de comprension existentes en los estudiantes. Estos modos pueden
usarse como heuristicas al resolver una tarea, eligiendo un orden en su uso, no Unico,
pero el transito entre estos modos lleva a tener diferentes significados del objeto mate-
maético. Para este estudio, se han hecho adaptaciones pertinentes a estos modos de pen-
samiento para estudiar el objeto matematico: el campo de direcciones asociado a una
EDO de primer orden.

La metodologia elegida fue cualitativa de caracter exploratorio y descriptivo (Maxwell,
2013). Participaron 4 estudiantes universitarios, que habian cursado la asignatura de
EDO, seleccionados mediante un muestreo no probabilistico por conveniencia (Max-
well, 2013). Con el objetivo de caracterizar los modos de pensar que tienen los estu-
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diantes respecto al campo de direcciones asociado a una EDO de primer orden, se di-
sefid e implementd un cuestionario (Cohen et al., 2007) con items enfocados especifi-
camente en situaciones en donde aparecen los campos de direcciones asociados, res-
pectivamente, a diferentes EDO. Una vez que los estudiantes realizaron el cuestionario
fueron entrevistados.

PRIMEROS RESULTADOS

El modo de pensamiento sintético-geometrico se identifica en dos actividades del cues-
. . . . ny ., d
tionario. Por ejemplo, cuando se pide trazar curvas solucion para la ecuacion d—z =X —

y, que pasen por puntos especificos (condiciones iniciales), sobre un campo de direc-
ciones ya marcado, en el cual aparece una curva solucion. Unicamente un participante
realizo la actividad correctamente. En la entrevista, él reconocio que cada curva solu-
cion de la EDO debe parecerse a la curva ya trazada, pasar por el punto sefialado y ser
tangente a esos “pequeiios trozos” de rectas en la trayectoria en donde esta el punto de
interés. Es decir, reconoce que las curvas asi trazadas son soluciones de la EDO que el
analizd. De forma general, los modos de pensamiento identificados ilustran diferentes
niveles de comprension del campo de direcciones asociado a una EDO de primer orden
y constituyen una base tedrica para el disefio de una propuesta didactica.
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INTRODUCTION AND THEORETICAL BACKGROUND

It is well-documented that students can experience the secondary-tertiary transition in
mathematics as demanding, and one of the discontinuities highlighted by Gueudet
and Thomas (2020) is that universities traditionally give students fewer opportunities
to be involved in mathematical activity within organized teaching. In a Norwegian
context, Goodchild et al. (2021) found indications of a preference for teacher-centred
approaches over student-centred approaches, and infrequent use of approaches they
considered having a potential for promoting active learning. However, while teacher-
centred approaches may be prevalent in large-enrolment courses with auditorium
lectures, there have been attempts to transform tutorials towards more discussion-
based teaching and student-active learning (e.g. (Borge, 2019)).

Inspired by the work of Borge, Goodchild and others, we designed activities for first-
semester calculus tutorials that are based on the "Thinking classrooms"-framework
originally developed in the context of K-12 mathematics classrooms (see for example
(Liljedahl, 2016)). We focused on two elements of mathematics teaching discussed
within this framework: the type of tasks the students are given, and how the students
work on these tasks. In our intervention, each weekly tutorial starts with a task designed
to promote student engagement in core mathematical activities such as problem
solving, reasoning and communication, and in line with the "Thinking classrooms"-
framework we intend the students to collaborate in small groups, working on vertical
non-permanent writing surfaces (such as small whiteboards).

In this study, we will investigate how the “Thinking classrooms”-based approach was
enacted by the teaching assistants (TAs) responsible for the calculus tutorials, with
the aim of identifying barriers to implementation and factors that may guide future
adaptations of the design. Our study can be classified as implementation-related re-
search (Koichu et al., 2021), as we are interested in the enactment of an approach out-
side of the context in which it was originally developed.

METHODS AND DATA

The TAs have written brief descriptions of how the tutorials have progressed. These
descriptions have formed the basis of semi-structured interviews with TAs, and we
have collected student questionnaire responses to supplement the interview data.
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PRELIMINARY RESULTS

The TAs appear to have made only minor modifications to the intended design, and all
report that - from their perspective - integrating “Thinking classroom”-activities in the
tutorials have been meaningful. However, this appears to contrast with preliminary
findings from the student questionnaire, which indicate barriers to implementation such
as (1) students perceiving the tutorial activities to be irrelevant for the intended learning
outcomes of the calculus course; (2) students’ reluctance to engage in group work; or
(3) other elements of the course design being perceived to compete with the tutorial
activities, such as students wanting to focus on mandatory assignments.

CONCLUSION

Many undergraduate mathematics courses are large-enrolment courses, involving a set
of teachers and TAs. New teaching approaches must be implemented at different levels,
and a threat to implementation may occur if the different elements of the course design
are not perceived to be in alignment. More actively involving both students, lecturers
and TAs in discussions about design decisions may reduce this threat to
implementation.

POSTER CONTENT

The poster will depict the “Thinking classrooms”-approach with illustrations and an
example task, elaborate on the overall design of the calculus course and how the TAs
have been supported throughout the semester, as well as presenting and discussing
barriers to implementation and factors that will guide future adaptations of the design.
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INTRODUCTION

In my recent work | have analysed the structuralist aspects in the teaching and learning
of real analysis in the first year of a Bachelor course (Laukert et al., 2023). For this, |
examined the course material. For the analyses presented on this poster, | will use the
same material but will focus on the role of the didactical variables that appear in the
type of tasks of pre-structuralist praxeologies in the case of continuous functions. Thus,
the research question is: What is the role of didactical variables in the development of
pre-structuralist praxeologies in the case of continuous functions?

THEORETICAL FRAMEWORK

The Anthropological Theory of the Didactic (Chevallard & Bosch, 2020) offers a 4T-
model of praxeologies (task, technique, technology, theory). The notion of didactical
variables relates to the praxis block of a praxeology. Chaachoua & Bessot (2019)
consider a generic type of task and a system of variables. Then the values of the
variables generate more specific types of tasks. An additional point of view with regard
to the 4T-model is gained by mathematical structuralism. In praxeological terms, the
structuralist method consists in the passage from a praxeology P = [T/?/?/Oparticular]
where it is unclear which technique to apply, to a structuralist praxeology Ps =
[T9/1/8/Ostructure] Where, modulo generalisation of the type of tasks (T9), the theory of a
given type of structure guides the mathematician in solving the problem. Furthermore,
Hausberger (2018) distinguis<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>